

Soylent: A Word Processor with a Crowd Inside
Michael S. Bernstein1, Greg Little1, Robert C. Miller1,

Björn Hartmann2, Mark S. Ackerman3, David R. Karger1, David Crowell1, Katrina Panovich1
1 MIT CSAIL

Cambridge, MA
{msbernst, glittle, rcm,

karger, dcrowell, kp}@csail.mit.edu

2 Computer Science Division
University of California, Berkeley

Berkeley, CA
bjoern@cs.berkeley.edu

3 Computer Science & Engineering
University of Michigan

Ann Arbor, MI
ackerm@umich.edu

ABSTRACT
This paper introduces architectural and interaction patterns
for integrating crowdsourced human contributions directly
into user interfaces. We focus on writing and editing, com-
plex endeavors that span many levels of conceptual and
pragmatic activity. Authoring tools offer help with prag-
matics, but for higher-level help, writers commonly turn to
other people. We thus present Soylent, a word processing
interface that enables writers to call on Mechanical Turk
workers to shorten, proofread, and otherwise edit parts of
their documents on demand. To improve worker quality,
we introduce the Find-Fix-Verify crowd programming pat-
tern, which splits tasks into a series of generation and re-
view stages. Evaluation studies demonstrate the feasibility
of crowdsourced editing and investigate questions of relia-
bility, cost, wait time, and work time for edits.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Outsourcing, Mechanical Turk, Crowdsourcing
INTRODUCTION
Word processing is a complex task that touches on many
goals of human-computer interaction. It supports a deep
cognitive activity – writing – and requires complicated ma-
nipulations. Writing is difficult: even experts routinely
make style, grammar and spelling mistakes. Then, when a
writer makes high-level decisions like changing a passage
from past to present tense or fleshing out citation sketches
into a true references section, she is faced with executing
daunting numbers of nontrivial tasks across the entire doc-
ument. Finally, when the document is a half-page over
length, interactive software provides little support to help
us trim those last few paragraphs. Good user interfaces aid
these tasks; good artificial intelligence helps as well, but it
is clear that we have far to go.
In our everyday life, when we need help with complex
cognition and manipulation tasks, we often turn to other
people. We ask friends to answer questions that we cannot
answer ourselves [8]; masses of volunteer editors flag spam

edits on Wikipedia [13]. Writing is no exception [7]: we
commonly recruit friends and colleagues to help us shape
and polish our writing. But we cannot always rely on them:
colleagues do not want to proofread every sentence we
write, cut a few lines from every paragraph in a ten-page
paper, or help us format thirty ACM-style references.
As a step toward integrating this human expertise perma-
nently into our writing tools, we present Soylent, a word
processing interface that utilizes crowd contributions to aid
complex writing tasks ranging from error prevention and
paragraph shortening to automation of tasks like citation
searches and tense changes. We hypothesize that crowd
workers with a basic knowledge of written English can
support both novice and expert writers. These workers per-
form tasks that the writer might not, such as scrupulously
scanning for text to cut, or updating a list of addresses to
include a zip code. They can also solve problems that ar-
tificial intelligence cannot, for example flagging writing
errors that the word processor does not catch.
Soylent aids the writing process by integrating paid crowd
workers from Amazon’s Mechanical Turk platform1

1) Shortn, a text shortening service that cuts selected text
down to 85% of its original length typically without
changing the meaning of the text or introducing errors.

 into
Microsoft Word. Soylent is people: its core algorithms in-
volve calls to Mechanical Turk workers (Turkers). Soylent
is comprised of three main components:

2) Crowdproof, a human-powered spelling and grammar
checker that finds problems Word misses, explains the
problems, and suggests fixes.

3) The Human Macro, an interface for offloading arbi-
trary word processing tasks such as formatting cita-
tions or finding appropriate figures.

The main contribution of this paper is the idea of embed-
ding paid crowd workers in an interactive user interface to
support complex cognition and manipulation tasks on de-
mand. These crowd workers do tasks that computers cannot
reliably do automatically and the user cannot easily script.
This paper contributes the design of one such system, an
implementation embedded in Microsoft Word, and a pro-
gramming pattern that increases the reliability of paid
crowd workers on complex tasks. We expand these contri-
butions with feasibility studies of the performance, cost,
and time delay of our three main components and a discus-

1 http://www.mturk.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10
Copyright 2010.

sion of the limitations of our approach with respect to pri-
vacy, delay, cost, and domain knowledge.
The fundamental technical contribution of this work is a
crowd programming pattern called Find-Fix-Verify. Me-
chanical Turk costs money and it can be error-prone; to be
worthwhile to the user, we must control costs and ensure
correctness. Find-Fix-Verify splits complex crowd intelli-
gence tasks into a series of generation and review stages
that utilize independent agreement and voting to produce
reliable results. Rather than ask a single crowd worker to
read and edit an entire paragraph, for example, Find-Fix-
Verify recruits one set of workers to find candidate areas
for improvement, then collects a set of candidate improve-
ments, and finally filters out incorrect candidates. This
process prevents errant crowd workers from contributing
too much, too little, or introducing errors into the docu-
ment.
Soylent is influenced by prior work on crowdsourced inter-
faces (e.g., [1, 9, 24]). Such work has generally aggregated
previous crowd interactions rather than recruited an on-
demand workforce for new requests. Instead of training on
previous users, we ask crowd workers to solve personalized
tasks on demand each time. This interface-for-hire model
has benefits and limitations that we explore in this paper.
In the rest of this paper, we review related work in crowd-
sourced interfaces and text editing. We then introduce Soy-
lent and its main components: Shortn, Crowdproof, and
The Human Macro. We detail the Find-Fix-Verify pattern
that powers Soylent; evaluate the feasibility of our three
components; and conclude with a discussion of privacy
issues and inherent limitations of our approach.
RELATED WORK
Soylent is related to work in two areas: crowdsourcing sys-
tems, and artificial intelligence for word processing.
Crowdsourcing
Gathering data to train algorithms is a common use of
crowdsourcing. For example, the ESP Game [27] collects
descriptions of objects in images for use in object recogni-
tion. Mechanical Turk is already used to collect labeled
data for machine vision [26] and natural language
processing [25]. Soylent tackles problems that are currently
infeasible for AI algorithms, even with abundant data.
However, Soylent’s output may be used to train future AIs.
Several systems power novel interactions with the wisdom
of crowds. HelpMeOut [9] collects debugging traces and
applies others’ error solutions to help fix code. FeedMe [1]
and Collabio [2] use friends to power recommender sys-
tems and tag cloud visualizations. MySong [24] indexes a
library of music chords to enable the user to build a chord
progression by singing a melody line. Google Suggest
mines the search engine’s query logs to speed and direct
new queries. Soylent is unique in asking paid crowd work-
ers to solve the user’s problems, rather than aggregating
past activity. Having an on-demand workforce also expands
the realm of tasks we can support beyond those requiring
user traces or incentives.

Soylent builds on work embedding on-demand workforces
inside applications and services. ChaCha2

Proofreading is emerging as a common task on Mechanical
Turk. Standard Minds

 recruits humans
to do search engine queries for users who are mobile; Ama-
zon Remembers uses Mechanical Turk to find products that
match a photo taken by the user on a phone; Sala et al.’s
PEST [23] uses Mechanical Turk to vet advertisement rec-
ommendations. These systems consist of a single user op-
eration and little or no interaction. Soylent extends this
work to more creative, complex tasks where the user can
make personalized requests and interact with the returned
data by direct manipulation.

3

Soylent’s usage of human computation means that its be-
havior depends in large part on qualities of crowdsourcing
systems and Mechanical Turk in particular. Recently, Ross
et al. found that Mechanical Turk had two major popula-
tions: well-educated, moderate-income Americans, and
young, well-educated but less wealthy workers from India
[22]. Kittur and Chi considered how to run user studies on
Mechanical Turk, proposing the use of quantitative verifia-
ble questions as a verification mechanism [11]. Find-Fix-
Verify builds on this notion of requiring verification to con-
trol quality. Heer and Bostock explored Mechanical Turk
as a testbed for graphical perception experiments, finding
reliable results when they implemented basic measures like
qualification tests [10]. Little et al. advocate the use of hu-
man computation algorithms on Mechanical Turk [16].
Find-Fix-Verify may be viewed as a new design pattern for
human computation algorithms. It is specifically intended
to control lazy and overeager Turkers, identify which edits
are tied to the same problem, and visualize them in an inter-
face. Quinn and Bederson have authored a survey of human
computation systems that expands on this brief review [21].

 offers a proofreading service
backed by Mechanical Turk that accepts plain text via a
web form and returns edits one day later. By contrast, Soy-
lent is embedded in a word processor, has much lower la-
tency, and presents the edits in Microsoft Word’s user in-
terface. Our work also contributes the Find-Fix-Verify pat-
tern to improve the quality of such proofreading services.

Artificial Intelligence for Word Processing
Automatic proofreading has a long history of research [14]
and has seen successful deployment in word processors.
However, Microsoft Word’s spell checker frequently suf-
fers from false positives, particularly with proper nouns and
unusual names. Its grammar checker suffers from the oppo-
site problem: it misses blatant errors.4

2 http://www.chacha.com

 Human checkers are
currently more reliable, and can also offer suggestions on
how to fix the errors they find, which is not always possible
for Word — for example, the common (but useless) Micro-
soft Word feedback, “Fragment; consider revising.”

3 http://www.standardminds.com
4 http://faculty.washington.edu/sandeep/check

Soylent’s Shortn component is related to document summa-
rization, which has also received substantial research atten-
tion [18]. Microsoft Word has a summarization feature that
uses sentence extraction, which identifies whole sentences
to preserve in a passage and deletes the rest, producing sub-
stantial shortening but at a great cost in content. Shortn’s
approach, which can rewrite or cut parts of sentences, is an
example of sentence compression, an area of active recent
research [5, 12] that suffers from a lack of training data [4].
The Human Macro is related to AI techniques for end-user
programming. Several systems allow users to demonstrate
repetitive editing tasks for automatic execution; examples
include Eager, TELS, and Cima [6], LAPIS [20], and
SmartEdit [15]. Other work has considered natural-
language-like programming syntax (e.g. [17]).
SOYLENT
Soylent is a prototype crowdsourced word processing inter-
face with three features: shortening, proofreading, and arbi-
trary macro tasks via human-language input.
Shortn: Text Shortening
Some authors struggle to remain within length limits on
papers and spend the last hours of the writing process
tweaking paragraphs to shave a few lines. This is painful
work and a questionable use of the authors’ time. Other
writers write overly wordy prose and need help editing.
Automatic summarization algorithms can provide useful
summaries [18], but cannot easily determine what language
to cut or shorten. Additionally, they cannot use language
generation techniques to make sure the resulting text flows.
Soylent’s Shortn interface allows authors to condense sec-
tions of text. The user selects the area of text that is too
long—for example a paragraph or section—then presses
the Shortn button in the Word’s Soylent ribbon tab. In re-
sponse, Soylent launches a series of Mechanical Turk tasks
in the background and notifies the user when the text is
ready. The user can then launch the Shortn dialog box

(Figure 1). On the left is the original paragraph; on the right
is the proposed revision. Shortn provides a single slider to
allow the user to continuously adjust the length of the para-
graph. As the user does so, Shortn computes the combina-
tion of crowd trimmings that most closely match the de-
sired length and presents that text to the user on the right.
From the user’s point of view, as she moves the slider to
make the paragraph shorter, sentences are slightly edited,
combined and cut completely to match the length require-
ment. Areas of text that have been edited or removed are
highlighted in red in the visualization. These areas may
differ from one slider position to the next: the cuts are not
monotonic in this sense.
Shortn typically can remove up to 15–30% of a paragraph
in a single pass, and up to ~50% with multiple iterations.
The Shortn algorithm preserves meaning when possible, so
it cuts unnecessary language or concept repetition. Remov-
ing whole arguments or sections is left to the user.
Crowdproof: Crowdsourced Proofreading
Soylent provides a human-aided spelling, grammar and
style checking interface called Crowdproof (Figure 2).
Crowdproof aims to catch spelling, style and grammar er-
rors that AI algorithms today cannot find or fix. The
process finds errors, explains the problem, and offers one to
five alternative rewrites. Crowdproof is essentially a distri-
buted proofreader operating for cents per task.
To use Crowdproof, the user highlights a section of text
and presses the proofreading button in the Soylent ribbon
tab. The task is queued to the Soylent status pane and the
user is free to keep working. (Because Crowdproof costs
money, it does not issue requests unless commanded.)
When the crowd is finished, Soylent calls out the edited
sections with a purple dashed underline. If the user clicks
on the error, a drop-down menu explains the problem and
offers a list of alternatives. By clicking on the desired alter-
native, the user replaces the incorrect text with an option of

Figure 1. Shortn allows users to adjust the length of a paragraph via a slider. Red text indicates locations where cuts or
rewrites have occurred. Tick marks represent possible lengths, and the blue background bounds the possible lengths.

his or her choice. If the user hovers over the Error Descrip-
tions menu item, the popout menu suggests additional
second-opinions of why the error was called out.
The Human Macro: Natural Language Crowd Scripting
Embedding crowd workers in an interface allows us to re-
consider designs for short end-user programming tasks.
Typically, users need to translate their intentions into algo-
rithmic thinking explicitly via a scripting language or im-
plicitly through learned activity [6]. But tasks conveyed to
humans can be written in a much more natural way. While
natural language command interfaces continue to struggle
with unconstrained input over a large search space, humans
are good at understanding written instructions.
The Human Macro is Soylent’s natural language command
interface. Soylent users can use it to request arbitrary work
quickly in human language. Launching the Human Macro
opens a request form (Figure 3). The design challenge here
is to ensure that the user creates tasks that are scoped cor-
rectly for a Mechanical Turk worker. We wish to prevent
the user from spending money on a buggy command.
The form dialog is split in two mirrored pieces: a task entry
form on the left, and a preview of what the Turker will see
on the right. The preview contextualizes the user’s request,
reminding the user he is writing something akin to a Help
Wanted or Craigslist advertisement. The form suggests that
the user provide an example input and output, which is an
effective way to clarify the task requirements to workers. If
the user selected text before opening the dialog, he has the
option to split the task by each sentence or paragraph, so
(for example) the task might be parallelized across all en-
tries on a list. The user then chooses how many separate
Turkers he would like to complete the task. The Human
Macro helps debug the task by allowing a test run on one
sentence or paragraph.
The user chooses whether the Turkers’ work should replace
the existing text or just annotate it. If the user chooses to
replace, the Human Macro underlines the text in purple and
enables drop-down substitution like the Crowdproof inter-
face. If the user chooses to annotate, the feedback populates
comment bubbles anchored on the selected text by utilizing
Word’s reviewing comments interface.
TECHNIQUES FOR PROGRAMMING CROWDS
This section characterizes the challenges of leveraging
crowd labor for open-ended document editing tasks. We
introduce the Find-Fix-Verify pattern to improve output

quality in the face of uncertain worker quality. Over the
past year, we have performed and documented dozens of
experiments on Mechanical Turk.5

Challenges in Programming with Crowd Workers

 For this project alone,
we have interacted with 8809 Turkers across 2256 different
tasks. We draw on this experience in the sections to follow.

We are primarily concerned with tasks where workers di-
rectly edit a user’s data in an open-ended manner. These
tasks include shortening, proofreading, and user-requested
changes such as address formatting. In our experiments, it
is evident that many of the raw results that Turkers produce
on such tasks are unsatisfactory. As a rule-of-thumb, rough-
ly 30% of the results from open-ended tasks are poor. This
“30% rule” is supported by the experimental section of this
paper as well. Clearly, a 30% error rate is unacceptable to
the end user. To address the problem, it is important to un-
derstand the nature of unsatisfactory responses.
High Variance of Effort
Turkers exhibit high variance in the amount of effort they
invest in a task. We might characterize two useful personas
at the ends of the effort spectrum, the Lazy Turker and the
Eager Beaver. The Lazy Turker does as little work as ne-
cessary to get paid. For example, when asked to proofread
the following error-filled paragraph from a high school
essay site,6

The theme of loneliness features throughout many scenes in Of Mice and
Men and is often the dominant theme of sections during this story. This
theme occurs during many circumstances but is not present from start to
finish. In my mind for a theme to be pervasive is must be present during
every element of the story. There are many themes that are present most
of the way through such as sacrifice, friendship and comradeship. But in
my opinion there is only one theme that is present from beginning to
end, this theme is pursuit of dreams.

 a Lazy Turker inserted only a single character
to correct a spelling mistake. The change is highlighted:

A first challenge is thus to discourage or prevent workers
from such behavior. Kittur et al. attacked the problem of
Lazy Turkers in crowdsourced user studies [12] by adding
clearly verifiable, quantitative questions (e.g., “How many
sections does the article have?”) that forced the Lazy Turk-
er to read the material being studied.
Equally problematic as Lazy Turkers are Eager Beavers.
Eager Beavers go beyond the task requirements in order to

5 http://groups.csail.mit.edu/uid/deneme/
6 http://www.essay.org/school/english/ofmiceandmen.txt

Figure 2. Crowdproof is a human-augmented proo-
freader. The drop-down explains the problem (blue
title) and suggests fixes (gold selection).

Figure 3. The Human Macro is an end-user program-
ming interface for automating document manipula-
tions. The left half is the user’s authoring interface; the
right half is a preview of what the Turker will see.

be helpful, but create further work for the user in the
process. For example, when asked to reword a phrase, one
Eager Beaver provided a litany of options:
The theme of loneliness features throughout many scenes in Of Mice and
Men and is often the principal, significant, primary, preeminent, pre-
vailing, foremost, essential, crucial, vital, critical theme of sections
during this story.

In their zeal, this worker rendered the resulting sentence
ungrammatical. Eager Beavers may also leave extra com-
ments in the document or reformat paragraphs. It would be
problematic to funnel such work back to the user.
Both the Lazy Turker and the Eager Beaver are looking for
a way to clearly signal to the requester that they have com-
pleted the work. Without clear guidelines, the Lazy Turker
will choose the path that produces any signal and the Eager
Beaver will produce too many signals.
Turkers Introduce Errors
Turkers working on complex tasks can accidentally intro-
duce substantial new errors. For example, when proofread-
ing paragraphs about the novel Of Mice and Men, Turkers
variously changed the title to just Of Mice, replaced exist-
ing grammar errors with new errors of their own, and
changed the text to state that Of Mice and Men is a movie
rather than a novel. Such errors are compounded if the out-
put of one Turker is used as input for other Turkers.
The Find-Fix-Verify Pattern
Our crowdsourced interface algorithms must control the
efforts of both the Eager Beaver and Lazy Turker and limit
introduction of errors. Absent suitable control techniques,
the rate of problematic edits is too high to be useful. We
feel that the state of programming crowds is analogous to
that of UI technology before the introduction of design pat-
terns like Model-View-Controller, which codified best
practices. In this section, we propose the Find-Fix-Verify
pattern as one method of programming crowds to reliably
complete open-ended tasks that directly edit the user’s data.
We describe the pattern and then explain its use in Soylent.
Find-Fix-Verify
The Find-Fix-Verify pattern separates open-ended tasks
into three stages where each worker can make a clear con-
tribution. The first stage, Find, asks Turkers to identify
patches of the user’s work that need more attention. For
example, when proofreading, the Find stage asks Turkers to
highlight at least one phrase or sentence that needs editing
(Figure 4). Any single Turker may produce a noisy result –
for example, Lazy Turkers may prefer errors near the be-
ginning of a paragraph. The Find stage aggregates indepen-
dent opinions to find the most consistently cited problems:
multiple independent agreement is typically a strong signal
that a crowd is correct. Soylent keeps the patches (text
ranges) that at least 20% of the workers agree on. Identified
patches are then fed in parallel into the Fix stage.
The Fix stage recruits workers to revise an identified patch.
Each task now consists of a constrained edit to an area of
interest. The worker can see the entire paragraph but only
edit the sentence or sentences directly containing the patch.
A small number (3–5) of Mechanical Turk workers propose

revisions. Even if 30% of work is bad, 3–5 submissions are
sufficient to produce a few viable alternatives.
The Verify stage performs quality control on revisions. We
randomize the order of the unique alternatives generated in
the Fix stage and ask 3–5 new workers to vote on them
(Figure 4). We either ask Turkers to vote on the best option
(when the interface needs a default choice, like
Crowdproof) or to flag poor suggestions (when the inter-
face requires as many options as possible, like Shortn). To
ensure that Turkers cannot vote for their own work, we ban
all Fix workers from participating in the Verify stage.
Pattern Discussion
Why should tasks be split into independent Find-Fix-Verify
stages? Why not let Turkers find an error and fix it, for
increased efficiency and economy? Lazy Turkers will al-
ways choose the easiest error to fix, so combining Find and
Fix will result in poor coverage. By splitting Find from Fix,
we can direct Lazy Turkers to propose a fix to patches that
they might otherwise ignore. Additionally, splitting Find
and Fix enables us to merge work completed in parallel.
Had each Turker edited the entire paragraph, we would not
know which edits were trying to fix the same problem. By
splitting Find and Fix, we can map edits to patches and
produce a much richer user interface—for example, the
multiple options in Crowdproof’s replacement dropdown.
The Verify stage reduces noise in the returned result.
Anecdotally, Turkers are better at vetting suggestions than
they are at producing original work. Independent agreement
among Verify workers can help certify an edit as good or
bad. Verification trades off time lag with quality: a user
who can tolerate more error but needs less time lag might
opt not to verify work or use fewer verification workers.
One challenge that the Find-Fix-Verify pattern shares with
other Mechanical Turk algorithms is that it can stall when
workers are slow to accept the task. Rather than wait for ten
Turkers to complete the Find task before moving on to Fix,
a timeout parameter can force our algorithm to advance if a
minimum threshold of workers have completed the work.
Find-Fix-Verify in Soylent
Both Shortn and Crowdproof use the Find-Fix-Verify pat-
tern. We will use Shortn as an illustrative example. To pro-
vide the user with near-continuous control of paragraph
length, Shortn should produce many alternative rewrites
without changing the meaning of the original text or intro-
duce7

We begin by splitting the input region into paragraphs. The
Find stage asks ten Turkers to identify candidate areas for
shortening in each paragraph. At least 20% (i.e., two) of the
Turkers must agree on a text region. Each agreed-upon
patch moves on to the Fix stage, where five Turkers see the
patch highlighted in the paragraph and are asked to shorten
the patch. Each worker also votes whether the patch could

 grammatical errors.

7 Word’s grammar checker, eight authors and six reviewers did

not catch the error in this sentence. Crowdproof later did, and
correctly suggested that “introduce” should be “introducing”.

be cut entirely. The algorithm now has a set of rewrites and
votes on whether the text can be cut. If the patch can be cut,
we introduce the empty string as a rewrite. In the Verify
stage, five Turkers see a list of all the rewrites where each
rewrite has been annotated using color and strikethroughs
to highlight its differences from the original. Each Turker
selects at least one rewrite that has significant spelling,
grammar, or style problems, and at least one rewrite that
significantly changes the meaning of the original sentence.
We use majority voting to remove problematic rewrites and
to decide whether the patch can be cut entirely. At the con-
clusion of the Verify stage, we have a set of candidate
patches and a list of verified rewrites for each patch.
To keep the algorithm responsive, we use a 15-minute
timeout at each stage. We require a minimum of six work-
ers in Find, three workers in Fix, and three workers in Veri-
fy. When the user specifies a desired maximum length,
Shortn searches for the longest combination of rewrites
subject to the length constraint. This search is a special case
of the knapsack problem and can be solved with a poly-
nomial time dynamic programming algorithm.
IMPLEMENTATION
Soylent consists of a front-end application-level add-in to
Microsoft Word and a back-end service to run Mechanical
Turk tasks (Figure 4). The Microsoft Word plug-in is writ-
ten using Microsoft Visual Studio Tools for Office (VSTO)
and the Windows Presentation Foundation (WPF). Back-
end scripts use the TurKit Mechanical Turk toolkit [16].
EVALUATION
Our initial evaluation sought to establish evidence for Soy-
lent’s end-to-end feasibility, as well as to understand the
properties of the Find-Fix-Verify design pattern.

Shortn Evaluation
We evaluated Shortn quantitatively by running it on exam-
ple texts. Our goal was to see how much Shortn could
shorten text, as well as its associated cost and time charac-
teristics. We collected five examples of texts that might be
sent to Shortn, each between one and seven paragraphs
long. We chose these inputs to span from preliminary drafts
to finished essays and from easily understood to dense
technical material (Table I).
To simulate a real-world deployment, we ran the algo-
rithms with a timeout enabled and set to twenty minutes.
We required 6–10 workers to complete the Find tasks and
3–5 workers to complete the Fix and Verify tasks: if a Find
task failed to recruit even six workers, it might wait indefi-
nitely. To be slightly generous while matching going rates
on Mechanical Turk, we paid $0.08 per Find, $0.05 per Fix,
and $0.04 per Verify.
Each resulting paragraph had many possible variations de-
pending on the number of shortened alternatives that passed
the Verify stage – we chose the shortest possible version
for analysis and compared its length to the original para-
graph. We also measured wait time, the time between post-
ing the task and the worker accepting the task, and work
time, the time between acceptance and submission. In all
tasks, it was possible for the algorithm to stall while wait-
ing for workers, having a large effect on averages. There-
fore, we report medians, which are more robust to outliers.
Results
Shortn produced revisions that were 78%–90% of the orig-
inal document length. For reference, a reduction to 85%
could slim an 11¾ page UIST draft down to 10 pages with
no substantial cuts in the content. Table I summarizes and
gives examples of Shortn’s behavior. Typically, Shortn
focused on unnecessarily wordy phrases like “are going to
have to” (Table I, Blog). Turkers merged sentences when
patches spanned sentence boundaries (Table I, Classic
UIST), and occasionally cut whole phrases or sentences.
To investigate time characteristics, we separate the notion
of wait time from work time. The vast majority of Shortn’s
running time is currently spent waiting, because it can take
minutes or hours for Turkers to find and accept the task.
While wait time is important given the current Mechanical
Turk, it is important to remember that the service will con-
tinue to grow. Assuming that the number of work tasks
does not increase equivalently, wait times will drop. So,
while our current median total wait time summed across the
three stages was 18.5 minutes (1st Quartile Q1 = 8.3 mi-
nutes, 3rd Quartile Q3 = 41.6 minutes), we believe that in
the future the worker population will be large enough to
consume any task as soon as it is posted.
Considering only work time and assuming negligible wait
time, Shortn produced cuts within minutes. We estimate
overall work time by examining the median amount of time
a worker spent in each stage of the Find-Fix-Verify
process. This process reveals that the median shortening
took 118 seconds of work time, or just under two minutes,

Figure 4. Find-Fix-Verify identifies patches in need of
editing, recruits workers to fix the patches, and votes
to approve work.

when summed across all three stages (Q1 = 60 seconds, Q3
= 3.6 minutes). As Mechanical Turk grows, users may see
shortening tasks approaching a limit of two minutes.
The average paragraph cost $1.41 to shorten under our pay
model. This cost split into $0.55 to identify an average of
two patches, then $0.48 to generate alternatives and $0.38
to filter results for each of those patches. Were we instead
to use a $0.01 pay rate for these tasks, the process would
cost $0.30 per paragraph. Our experience is that paying less
slows down the later parts of the process, but it does not
impact quality [19] — it would be viable for shortening
paragraphs under a loose deadline.
Qualitatively, Shortn was most successful when the input
had unnecessary text. For example, with the Blog input,
Shortn was able to remove several words and phrases with-
out changing the meaning of the sentence. Workers were
able to blend these cuts into the sentence easily. Even the
most technical input texts had extraneous phrases, so
Shortn was usually able to make at least one small edit of
this nature in each paragraph.
Shortn occasionally introduced errors into the paragraph.
While Turkers tended to stay away from cutting material
they did not understand, they still occasionally flagged such
patches. As a result, Turkers sometimes made edits that
were grammatically appropriate but stylistically incorrect.
For example, it may be inappropriate to remove the aca-
demic signaling phrase “In this paper we argue that…”
from an introduction. Cuts were a second source of error:
Turkers in the Fix stage would vote that a patch could be
removed entirely from the sentence, but were not given the
chance to massage the cut into the sentence. So, cuts often
led to capitalization and punctuation problems at sentence
boundaries. Modern auto-correction techniques could catch
many of these errors. Parallelism was another source of

error: for example, in Technical Computer science (Table
I), the two cuts were from two different patches, and thus
handled by separate Turkers. These Turkers could not pre-
dict that their cuts would not match, one cutting the paren-
thetical and the other cutting the main phrase.
To investigate the extent of these issues, we coded all 126
shortening suggestions as to whether they led to a gram-
matical error. 37 suggestions were ungrammatical, again
supporting our rule of thumb that 30% of raw Turker edits
will be noisy. The Verify step caught 19 of the errors (50%
of 37) while also removing 15 grammatical sentences: its
error rate was thus (18 false negatives + 15 false positives)
/ 137 = 26.1%, again near 30%. Microsoft Word’s grammar
checker caught 13 of the errors. Combining Word and
Shortn caught 24 of the 37 errors.
We experimented with feeding the shortest output from the
Blog text back into the algorithm to see if it could continue
shortening. It continued to produce cuts between 70–80%
with each iteration. We ceased after 3 iterations, having
shortened the text to less than 50% length without sacrific-
ing readability or major content. The user can take advan-
tage of this functionality by pushing the Shortn button
again once the results come back.
Crowdproof Evaluation
To evaluate Crowdproof, we obtained a set of five input
texts in need of proofreading (Table II). We manually la-
beled all spelling, grammatical and style errors in each of
the five inputs, identifying a total of 49 errors. We then ran
Crowdproof on the inputs using a 20-minute stage timeout,
with prices $0.06 for Find, $0.08 for Fix, and $0.04 for
Verify. We measured the errors that Crowdproof caught,
that Crowdproof fixed, and that Word caught. We ruled
that Crowdproof had caught an error if one of the identified
patches contained the error.

Input
Original
Length

Final
Length

Turk
Statistics

Time per
Paragraph Example Output

Blog 3 paragraphs
12 sentences
272 words

83%
character
length

$4.57
158 workers

46 --- 57
min

Print publishers are in a tizzy over Apple’s new iPad because they hope to finally
be able to charge for their digital editions. But in order to get people to pay for
their magazine and newspaper apps, they are going to have to offer something
different that readers cannot get at the newsstand or on the open Web.

Classic UIST
[28]

7 paragraphs
22 sentences
478 words

87% $7.45
264 workers

49 --- 84
min

The metaDESK effort is part of the larger Tangible Bits project. The Tangible
Bits vision paper, which introduced the metaDESK along withand two compa-
nion platforms, the transBOARD and ambientROOM.

Draft UIST
[29]

5 paragraphs
23 sentences
652 words

90% $7.47
284 workers

52 --- 72
min

In this paper we argue that it is possible and desirable to combine the easy input
affordances of text with the powerful retrieval and visualization capabilities of
graphical applications. We present WenSo, a tool thatwhich uses lightweight text
input to capture richly structured information for later retrieval and navigation in
a graphical environment.

Rambling
E-mail

6 paragraphs
24 sentences
406 words

78% $9.72
362 workers

44 --- 52
min

A previous board member, Steve Burleigh, created our web site last year and gave
me alot of ideas. For this year, I found a web site called eTeamZ that hosts web
sites for sports groups. Check out our new page: […]

Technical
Comp. Sci.
[3]

3 paragraphs
13 sentences
291 words

82% $4.84
188 workers

132 --- 489
min

Figure 3 shows the pseudocode that implements this design for Lookup. FAWN-
DS extracts two fields from the 160-bit key: the i low order bits of the key (the
index bits) and the next 15 low order bits (the key fragment).

Table I. Our evaluation run of Shortn produced revisions between 78% – 90% of the original paragraph length on a single
run. The Example Output column contains example edits from each input.

Results
Soylent’s proofreading algorithm caught 33 of the 49 errors
(67%). For comparison, Microsoft Word’s grammar check-
er found 15 errors (30%). Combined, Word and Soylent
flagged 82% of all errors. Word and Soylent tended to
identify different errors, rather than both focusing on the
easy and obvious mistakes. This result lends more support
to Crowdproof’s approach: it will waste relatively little
money that an AI could have saved.
Crowdproof was effective at fixing errors that it found.
Using the Verify stage to choose the best textual replace-
ment, Soylent fixed 29 of the 33 errors it flagged (88%). To
investigate the impact of the Verify stage, we labeled each
unique correction that Turkers suggested as grammatical or
not. Fully 28 of 62 suggestions, or 45%, were ungrammati-
cal. The fact that such noisy suggestions produced correct
replacements again suggests that Turkers are much better at
verification than they are at authoring.
Crowdproof’s most common problem was missing a minor
error that was in in the same patch as a more egregious
error. The four errors that Crowdproof failed to fix were all
contained in patches with at least one other error; Lazy
Turkers fixed only the most noticeable problem. A second
problem was a lack of domain knowledge: in the ESL ex-
ample in Table II, Turkers did not know what a GUI was,
so they could not know that the author intended “GUIs”
instead of “GUI”. There were also stylistic opinions that the
original author might not have agreed with: in the Draft
UIST example in Table II, the author clearly had a penchant
for triple dashes that the Turkers did not appreciate.
Crowdproof shared many running characteristics with
Shortn. Its median work time was 2.8 minutes (Q1 = 1.7
minutes, Q3 = 4.7 minutes), so it completes in very little
work time. Similarly to Shortn, its wait time was 18 mi-
nutes (Median = 17.6, Q1 = 9.8, Q3 = 30.8). It cost more
money to run per paragraph (µ=$3.40, σ=$2.13) because it

identified far more patches per paragraph: we chose para-
graphs in dire need of proofreading.
Human Macro Evaluation
We were interested in understanding whether end users
could instruct Mechanical Turk workers to perform open-
ended tasks. Can users communicate their intention clearly?
Can Turkers execute the amateur-authored tasks correctly?
Method
We generated five feasible Human Macro scenarios (Table
III). We recruited two sets of users: five undergraduate and
graduate students in our computer science department (4
male) and five administrative associates in our department
(all female). We showed each user one of the five prompts,
consisting of an example input and output pair. We pur-
posefully did not describe the task to the participants so that
we would not influence how they wrote their task descrip-
tions. We then introduced participants to The Human Ma-
cro and described what it would do. We asked them to
write a task description for their prompt using The Human
Macro. We then sent the description to Mechanical Turk
and requested that five Turkers complete each request. In
addition to the ten requests generated by our participants,
one author generated five requests himself to simulate a
user who is familiar with Mechanical Turk.
We coded results using two quality metrics: intention (did
the Turker understand the prompt and make a good faith
effort?) and accuracy (was the result flawless?). If the
Turker completed the task but made a small error, the result
was coded as good intention and poor accuracy.
Results
Users were generally successful at communicating their
intention (Table III). The average command saw an 88%
intention success rate (max = 100%, min = 60%). Typical
intention errors occurred when the prompt contained two
requirements: for example, the Figure task asked both for
an image and proof that the image is Creative Commons-

Input Content
Errors
all/caught/fixed Turkers Time Example Output

Passes
Word’s
Checker 4

1 paragraph
4 sentences
49 words

9 / 9 / 8 $4.76
77 workers

48
min

Marketing areis bad for brands big and small. You Kknow Wwhat I am Ssaying. It is no
wondering that advertisings are is bad for companyies in America, Chicago and Germany.
Updating of brand image areis bad for processes in one company and many companies.

ESL
1 paragraph
8 sentences
166 words

12 / 5 / 4 $2.26
38 workers

47
min

However, while GUI made using computers be more intuitive and easier to learn, it
didn’t let people be able to control computers efficiently. Massesnis only canThe masses
only can use the software developed by software companies, unless they know how to
write programs.

Notes 2 paragraphs
8 sentences
107 words

14 / 8 / 8 $4.72
79 workers

42---53
min

Blah blah blah------This is an argument about whether there should be a standard ‘‘nosql
NoSQL storage’’ API to protect developers storing their stuff in proprietary services in the
cloud. Probably unrealistic. To protect yourself, use an open software offering, and self-
host or go with hosting solution that uses open offering.

Wikipedia 1 paragraph
5 sentences
63 words

8 / 7 / 6 $2.18
36 workers

54
min

Dandu Monara (Flying Peacock, Wooden Peacock), The Flying mMachine able to fly.
The King Ravana (Sri Lanka) built it. Accorinding to hHindu believesfs in Ramayanaya
King Ravana used "Dandu Monara" for abduct queen Seetha from Rama. According to
believers, "Dandu Monara" landed at Werangatota.

UIST
Draft

1 paragraph
6 sentences
135 words

6 / 4 / 3 $3.30
53 workers

96
min

Many of these problems vanish if we turn to a much older recording technology---text.
When we enter text, each (pen or key) stroke is being used to record the actual informa-
tion we care about---; none is wasted on application navigation or configuration.

Table II. A report on Crowdproof’s runtime characteristics and example output.

http://en.wikipedia.org/wiki/Sri_Lanka�

licensed. Turkers read far enough to understand that they
needed to find a picture, found one, and left. Successful
users clearly signaled Creative Commons status in the title
field of their request.
With accuracy, we again see that roughly 30% of work
contained an error. (The average accuracy was 70.8%.)
Turkers commonly got the task mostly correct, but failed
on some detail. For example, in the Tense task, some Turk-
ers changed all but one of the verbs to present tense, and in
the List Processing task, sometimes a field would not be
correctly capitalized or an Eager Beaver would add too
much extra information. These kinds of errors would be
dangerous to expose to the user, because the user might
likewise not realize that there is a small error in the work.
DISCUSSION
This section reviews some fundamental questions about the
nature of paid, crowd-powered interfaces as embodied in
Soylent. Our work suggests that it may be possible to tran-
sition from an era where Wizard of Oz techniques were
used only as prototyping tools to an era where a “Wizard of
Turk” can be permanently wired into a system. We touch
on resulting issues of wait time, cost, legal ownership, pri-
vacy, and domain knowledge.
In our vision of interface outsourcing, authors have imme-
diate access to a pool of human expertise. Lag times in our
current implementation are still on the order of minutes to
hours, due to worker demographics, worker availability, the
relative attractiveness of our tasks, and so on. While future
growth in crowdsourced work will likely shorten lag times,
this is an important avenue of future work. It may be possi-
ble to explicitly engineer for responsiveness in return for
higher monetary investment, or to keep workers on retainer
with distractor tasks until needed [3].

With respect to cost, Soylent requires that authors pay all
workers for document editing — even if many changes
never find their way into the final work product. One might
therefore argue that interface outsourcing is too expensive
to be practical. We counter that in fact all current document
processing tasks also incur significant cost (in terms of
computing infrastructure, time, software and salaries); the
only difference is that interface outsourcing precisely quan-
tifies the price of each small unit of work. While payment-
per-edit may restrict deployment to commercial contexts, it
remains an open question whether the gains in productivity
for the author are justified by the expense.
Regarding privacy, Soylent exposes the author’s document
to third party workers without knowing the workers’ identi-
ties. Authors and their employers may not want such expo-
sure if the document’s content is confidential or otherwise
sensitive. One solution is to restrict the set of workers that
can perform tasks: for example, large companies could
maintain internal worker pools. Rather than a binary oppo-
sition, a continuum of privacy and exposure options exists.
Soylent also raises questions over legal ownership of the
resulting text, which is part-user and part-Turker generated.
Do the Turkers who participate in Find-Fix-Verify gain any
legal rights to the document? We believe not: the Mechani-
cal Turk worker contract explicitly states that it is work-
for-hire, so results belong to the requester. Likewise with
historical precedent: traditional copyeditors do not own
their edits to an article. However, crowdsourced interfaces
will need to consider legal questions carefully.
A final concern is that anonymous workers may not have
the necessary domain knowledge or enough shared context
to usefully contribute. We agree that some tasks, like flesh-
ing out a related work section in an academic paper based
on bullet points, are much more difficult to achieve on to-

Task Quality Example Request Example Input Example Output
Tense
$0.10
1 paragraph

CS: 100% intention,
 (20% accuracy)
Admin: 100% (40%)
Author: 100% (60%)

Admin: ‘‘Please change text in
document from past tense to
present tense.’’

I gave one final glance around before
descending from the barrow. As I did
so, my eye caught something […]

I give one final glance around before
descending from the barrow. As I do
so, my eye catches something […]

Figure
$0.20
1 paragraph

CS: 75% (75%)
Admin: 75% (75%)
Author: 60% (60%)

CS: ‘‘Pick out keywords from the
paragrah like Yosemite, rock, half
dome, park. Go to a site which
hsa CC licensed images […]’’

When I first visited Yosemite State
Park in California, I was a boy. I was
amazed by how big everything was
[…]

http://commons.wikimedia.org
/wiki/File:03_yosemite_half_dome.jpg

Opinions
$0.15
1 paragraph

CS: 100% (100%)
Admin: 100% (100%)
Author: 100% (100%)

CS: ‘‘Please tell me how to make
this paragraph communicate
better. Say what's wrong, and
what I can improve. Thanks!’’

Take a look at your computer. Think
about how you launch programs, edit
documents, and browse the web.
Don't you feel a bit lonely? […]

This paragraph needs an objective I
feel like. […] After reading I feel like
there should be about five more sen-
tences […]

Citation
Gathering
$0.40
3 citations

CS: 75% (75%)
Admin: 100% (100%)
Author: 66% (40%)

Admin: ‘‘Hi, please find the
bibtex references for the 3 papers
in brackets. You can located
these by Google Scholar searches
and clicking on bibtex.’’

Duncan and Watts [Duncan and
watts HCOMP 09 anchoring] found
that Turkers will do more work when
you pay more, but that the quality is
no higher."]

@conference{ title={{Financial incen-
tives and […]}}, author={Mason, W.
and Watts, D.J.}, booktitle={HCOMP
‘09}}

List
Processing
$0.05
10 inputs

CS: 82% (82%)
Admin: 98% (96%)
Author: 91% (68%)

Admin: ‘‘Please complete the
addresses below to include all
informtion needed as in example
below. […]’’

Max Marcus, 3416 colfax ave east,
80206

Max Marcus
3416 E Colfax Ave
Denver, CO 80206

Table III. The five tasks in the left column led to a variety of request strategies. Terse, error-filled user requests still often led to success.

day’s Mechanical Turk. However, a large subset of editing
tasks only requires generic editing skills. We also may ef-
fectively personalize by directing tasks to Turkers who
have successfully worked on a user’s documents before.
CONCLUSION
The following conclusion was Shortn’ed to 85% length:
This paper presents Soylent, a word processing interface
that uses crowd workers to help with proofreading, docu-
ment shortening, editing and commenting tasks. Soylent is
an example of a new kind of interactive user interface in
which the end user has direct access to a crowd of workers
for assistance with tasks that require human attention and
common sense. Implementing these kinds of interfaces
requires new software programming patterns for interface
software, since crowds behave differently than computer
systems. We have introduced one important pattern, Find-
Fix-Verify, which splits complex editing tasks into a series
of identification, generation, and verification stages that use
independent agreement and voting to produce reliable re-
sults. We evaluated Soylent with a range of editing tasks,
finding and correcting 82% of grammar errors when com-
bined with automatic checking, shortening text to approx-
imately 85% of original length per iteration, and executing
a variety of human macros successfully.
Future work falls in three categories. First are new crowd-
driven features for word processing, such as readability
analysis, smart find-and-replace (so that renaming “Mi-
chael” to “Michelle” also changes “he” to “she”), and fig-
ure or citation number checking. Second are new tech-
niques for optimizing crowd-programmed algorithms to
reduce wait time and cost. Finally, we believe that our re-
search points the way toward integrating on-demand crowd
work into other authoring interfaces, particularly in creative
domains like image editing and programming.
ACKNOWLEDGMENTS
We thank the MIT User Interface Design and Haystack
groups for their support. This work was supported in part
by National Science Foundation award IIS-0712793.
REFERENCES
1. Bernstein, M., Marcus, A., Karger, D.R., and Miller, R.C.

Enhancing Directed Content Sharing on the Web. CHI '10,
ACM Press (2010).

2. Bernstein, M., Tan, D., Smith, G., Czerwinski, M., et al.
Collabio: A Game for Annotating People within Social
Networks. UIST '09, ACM Press (2009), 177–180.

3. Bigham, J.P., Jayant, C., Ji, H., Little, G., et al. VizWiz:
Nearly Real-time Answers to Visual Questions. UIST '10,
ACM Press (2010).

4. Clarke, J. and Lapata, M. Models for sentence compres-
sion: a comparison across domains, training requirements
and evaluation measures. ACL '06, Association for Com-
putational Linguistics (2006).

5. Cohn, T. and Lapata, M. Sentence compression beyond
word deletion. COLING '08, (2008).

6. Cypher, A. Watch What I Do. MIT Press, Cambridge, MA,
1993.

7. Dourish, P. and Bellotti, V. Awareness and coordination in
shared workspaces. CSCW '92, ACM Press (1992).

8. Evans, B. and Chi, E. Towards a model of understanding
social search. CSCW '08, ACM Press (2008).

9. Hartmann, B., MacDougall, D., Brandt, J., and Klemmer,
S. What Would Other Programmers Do? Suggesting Solu-
tions to Error Messages. CHI '10, ACM Press (2010).

10. Heer, J. and Bostock, M. Crowdsourcing Graphical Per-
ception: Using Mechanical Turk to Assess Visualization
Design. CHI '10, ACM Press (2010).

11. Kittur, A., Chi, E.H., and Suh, B. Crowdsourcing user
studies with Mechanical Turk. CHI '08, ACM Press
(2008).

12. Knight, K. and Marcu, D. Summarization beyond sentence
extraction: a probabilistic approach to sentence compres-
sion. Artificial Intelligence 139, 1 (2002).

13. Krieger, M., Stark, E.M., and Klemmer, S.R. Coordinating
tasks on the commons: designing for personal goals, ex-
pertise and serendipity. CHI '09, ACM Press (2009).

14. Kukich, K. Techniques for automatically correcting words
in text. ACM Computing Surveys (CSUR) 24, 4 (1992).

15. Lieberman, H. Your Wish is My Command. Morgan
Kaufmann, San Francisco, 2001.

16. Little, G., Chilton, L., Goldman, M., and Miller, R.C.
TurKit: Human Computation Algorithms on Mechanical
Turk. UIST '10, ACM Press (2010).

17. Little, G., Lau, T.A., Cypher, A., Lin, J., et al. Koala: Cap-
ture, Share, Automate, Personalize Business Processes on
the Web. CHI '07, (2007).

18. Marcu, D. The Theory and Practice of Discourse Parsing
and Summarization. MIT Press, 2000.

19. Mason, W. and Watts, D. Financial Incentives and the
“Performance of Crowds”. ACM SIGKDD Workshop on
Human Computation, ACM Press (2009).

20. Miller, R. and Myers, B. Interactive simultaneous editing
of multiple text regions. USENIX '01, (2001).

21. Quinn, A.J. and Bederson, B.B. A Taxonomy of Distri-
buted Human Computation.

22. Ross, J., Irani, L., Silberman, M.S., Zaldivar, A., et al.
Who Are the Crowdworkers? Shifting Demographics in
Amazon Mechanical Turk. alt.chi '10, ACM Press.

23. Sala, M., Partridge, K., Jacobson, L., and Begole, J. An
Exploration into Activity-Informed Physical Advertising
Using PEST. Pervasive '07, Springer Berlin Heidelberg
(2007).

24. Simon, I., Morris, D., and Basu, S. MySong: automatic
accompaniment generation for vocal melodies. Proc. CHI
'08, ACM Press (2008).

25. Snow, R., O'Connor, B., Jurafsky, D., and Ng, A.Y. Cheap
and fast—but is it good?: evaluating non-expert annota-
tions for natural language tasks. ACL '08, (2008).

26. Sorokin, A. and Forsyth, D. Utility data annotation with
Amazon Mechanical Turk. CVPR '08, (2008).

27. von Ahn, L. and Dabbish, L. Labeling images with a com-
puter game. CHI '04, ACM Press (2004).

	Abstract
	Introduction
	Related Work
	Crowdsourcing
	Artificial Intelligence for Word Processing

	Soylent
	Shortn: Text Shortening
	Crowdproof: Crowdsourced Proofreading
	The Human Macro: Natural Language Crowd Scripting

	Techniques for Programming Crowds
	Challenges in Programming with Crowd Workers
	High Variance of Effort
	Turkers Introduce Errors

	The Find-Fix-Verify Pattern
	Find-Fix-Verify
	Pattern Discussion
	Find-Fix-Verify in Soylent

	Implementation
	Evaluation
	Shortn Evaluation
	Results

	Crowdproof Evaluation
	Results

	Human Macro Evaluation
	Method
	Results

	Discussion
	Conclusion
	Acknowledgments
	References

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

