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Abstract
While prior research has categorized common errors and code
quality issues of student programmers, little attention has been paid
to researching student efficiency bugs. Qualitative content analysis
of 250 slow student submissions across five CS2 assignments yielded
over 750 efficiency bugs. Extracting general themes resulted in an
efficiency bug taxonomy with three main categories: superfluous
computation, suboptimal data structure design, and suboptimal
algorithm design, with 12 subcategories. Analysis of specific bug
frequencies across the assignments provided insights that may
inform content design for programming courses.

CCS Concepts
• Social and professional topics → Computing education; •
Software and its engineering→ Software performance.
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programming education; programming mistakes; software perfor-
mance antipatterns; efficiency; code quality
ACM Reference Format:
Hope Dargan, Adam Gilbert-Diamond, Adam J. Hartz, and Robert C. Miller.
2025. "Why ismy code slow?" Efficiency Bugs in Student Code. In Proceedings
of the 56th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701939

1 Introduction
Programming students often start by learning how to write cor-
rect code before learning how to write code with good style. As
students progress and encounter more complex assignments with
runtime constraints, they learn how to write efficient code. While
prior research has devoted considerable attention to categoriz-
ing common student errors [1, 5, 9–11] and code quality issues
[2, 4, 6, 8, 12, 16, 17], we are not aware of any prior work that
focuses on categorizing efficiency bugs in student code.

A recent study by Izu and Mirolo [6] found that by the end of a
CS1 course many students thought performance was an important
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aspect of code quality, but they often had flawed reasoning about
program performance. Specifically, their study had 79 students at
week 22 in a CS1 course rank five correct code samples from best
to worst and explain the criteria for their ranking. They found
that the top criterion students used for quality assessment was
performance, but noted that 68% of flawed ranking explanations
were due to assessing performance incorrectly.

In order to design course content that can better equip students
to assess program performance and address efficiency bugs, we
need to understand what issues they are encountering. This paper
aims to categorize the early efficiency bugs that students make in
order to help instructors teach students explicitly about common
efficiency bugs and design assignments with these bugs in mind.

This paper explores the efficiency bugs in student code that is
mostly correct but slow by investigating the following research
questions. First, what efficiency bugs occur in student code? Second,
which efficiency bugs occur only in particular assignments, and
which occur generally across assignments? Investigation of these
questions through qualitative content analysis of 250 randomly-
selected slow submissions across five assignments revealed over 750
specific time-related efficiency bugs. Iteratively extracting general
themes and creating terms and definitions for the most common
efficiency bugs resulted in a taxonomy with 12 specific labels that
were then applied to the selected submissions.

The taxonomy proposed in this paper consists of three main
efficiency bug categories: superfluous computation, suboptimal data
structure design, and suboptimal algorithm design. Within these
three categories we defined 12 specific subcategories and created
illustrative code snippets. Additionally, superfluous computations
such as Failing to Cache, Failing to Short Circuit, or Executing
Dead Code were present to varying degrees across all assignments.
Other efficiency bugs such as Solving Irrelevant Subproblems or
Misordering Subproblems tended to be very frequent within specific
assignments. These insights may inform assignment-design around
specific bugs.

2 Background and Related Work
Many prior works have investigated errors in student code and
created taxonomies of common mistakes. For example, Hristova
et al. [5] conducted a survey of students and teachers to identify
Java programming bugs and extracted common themes to create
a taxonomy of 20 student errors that were split into categories of
syntax, semantic, and logic errors. McCall and Kölling [11]manually
analyzed 197 code samples from an introductory Java course and
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found 80 specific errors that they classified as syntax, semantic, and
logic errors, the same category labels used by Hristova et al. McCall
and Kölling found that analyzing student code samples by hand,
rather than by using compiler error messages, led to more precise
and reliable identification and ranking of student error frequencies,
due to both the disconnect between student errors and automated
diagnostic messages and the fact that student code could contain
multiple distinct errors on the same line. Altadmri and Brown [1]
developed a script to automatically analyze over 37 million code
samples from the Blackbox database to study the frequency and
time-to-fix of different errors, using 18 of the 20 student errors
identified by Hristova et al. Mase and Nel [9] used manual content
analysis to review over 650 C# code samples generated by 38 novice
CS students to identify 21 common student code errors. The study
expanded on the error categories of Altadmri and Brown, resulting
in nine new errors and rearranging the error classification to include
type errors in addition to the categories of style, semantic, and logic
errors proposed by Hristova et al.

In addition to [6], other CS education papers have encountered
efficiency as a factor related to code quality. In 2017, an ITiCSE
working group [2] administered a survey on code quality to stu-
dents, teachers, and developers. Through qualitative analysis, the
group determined that all three groups listed readability and struc-
ture as important aspects of code quality. The group also found
that over a quarter of respondents listed dynamic behavior, which
includes good performance, as an important aspect of code quality.

Other studies have designed taxonomies for student style and
code quality errors, which have some efficiency implications. For
example, Stegeman et al. [17] developed a style rubric that includes
ten categories; the first five categories relate to the readability and
code style whereas the second five categories relate to algorithms
and code structure. Keuning et al. [8] used the Java PMD tool to
detect 24 code quality issues in 2.6 million novice code samples
from the Blackbox dataset, dividing the issues into five categories
taken from Stegeman et al. relating to algorithms and code struc-
ture. While these two studies did not focus on efficiency specifically,
some of their general code quality categories have efficiency im-
plications. For example, the idiom category specifies that students
should use library functionality, the expressions category encour-
ages appropriate data types, and the flow category discourages code
duplication, all of which may have an impact on efficiency.

Other prior work in the area of software performance engineer-
ing has identified common software performance antipatterns and
methods for detecting, refactoring, and modeling such performance
issues [13, 15]. However, this work mainly relates to large scale
systems involving hardware, databases, and concurrency issues
that are mostly beyond the scope of CS2 courses.

3 Method
This paper seeks to study the efficiency bugs that students make
by investigating the following questions:

• RQ1. What efficiency bugs occur in student code?
• RQ2. Which efficiency bugs occur only in particular assign-
ments, and which occur generally across assignments?

Like some previous studies that categorized mistakes made by
programming students [9, 11], we investigated our research ques-
tions primarily through qualitative content analysis of pseudonym-
ized student code samples. The student code samples in this study
came from the files submitted to our automatic grading server by
students who registered for our CS2 course during the Fall 2023
semester. This study obtained an IRB exemption because the assign-
ment files were collected as a regular part of running the course.

3.1 Data Collection
Our CS2 course covers topics such as higher-order functions, data
structure design, graph search, recursion, backtracking, and object-
oriented programming. While efficiency is not our primary focus,
we do touch on it, for example, discussing data structure choice
and linear-time versus constant-time operations, optimizing graph
search with a visited-node set, and pruning a backtracking search.

Students learn to apply course topics by completing 12week-long
Python assignments that involve implementing multiple related
functions in a single file in order to pass given test cases. A majority
of the grade for each assignment is determined by the automatic
grading server, which allows students to submit repeatedly before
the deadline. The server assesses assignment files by running vari-
ous groups of test cases and recording which tests in each group
pass within a hand-tuned time limit. Because code efficiency can
act as a proxy for understanding of some of the topics we cover,
some test case groups are intentionally designed with large inputs
and time limits that are intended to make code with poor algorithm
or data structure choices exceed the time limit.

For the purposes of this study, we are primarily concerned with
categorizing the most severe runtime efficiency bugs, so we only
examined student submissions that experienced a timeout on our
automatic grading server. During the Fall 2023 semester, 408 stu-
dents submitted 19,824 assignment files to the server. Of these files,
roughly 43% passed all test cases under the specified time limit, 15%
timed out on at least one group of tests, and the remaining 42%
experienced a correctness error. We filtered the assignment files
to only include timeouts, since timing out is evidence that there is
at least one severe efficiency bug preventing the submission from
passing the tests within the time limit. We also removed timeout
submissions that had major correctness issues, as evidenced by
failing most of the test cases before the timeout, because we en-
courage students to focus on correctness before efficiency. Because
students were allowed to submit repeatedly, we sought to avoid
sampling duplicate submissions by including each student’s first
and last timeout submission for each assignment. If the first and
last timeout submission for a student was sampled, we manually
inspected the files and discarded one if they were nearly identical.

From our twelve assignments, we selected five assignments
which accounted for 80% of the submissions that timed out. Our
analysis focused on 11 specific test cases across the five assignments
that were the most common bottlenecks for students who experi-
enced timeouts. Multiple criteria were considered as part of this
selection process including the percentage of students who experi-
enced a timeout on the assignment, the time difference between the
fastest 10% of submissions and the timeout submissions on the test
case, what part of assignment functionality the test case covered,
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Efficiency Bug Category Definition % Subs (/250) % Bugs (/753)
Superfluous Computation

Failing to Cache Not storing or not using data resulting in repeated computation. 36% (90) 18% (136)
Failing to Short Circuit Continuing a computation after the answer has been determined or

ordering computation in a way that prevents exiting sooner.
40% (101) 15% (111)

Executing Dead Code Code that can be removed with very slight changes that would in-
crease efficiency without sacrificing correctness. Does not involve
copying data.

32% (80) 13% (101)

Extra Copying Creating shallow or deep copies of data that will not be modified or
that can safely be mutated.

26% (65) 10% (72)

Failing to Hoist Performing a computation at every recursive step or loop iteration
when a single computation external to the structure would suffice.

13% (32) 4% (32)

Extra Loop / Recursive Overhead Performing necessary distinct steps with similar repeated iterative
or recursive structures, when the steps could be performed more
efficiently in one structure.

5% (13) 2% (14)

Total 84% (210) 62% (466)
Suboptimal Data Structure Design

Slow Data Structure Poor choice of data structure resulting in inefficient operations. 40% (101) 18% (132)
Expensive Data Transformation The amount of time taken to create a data structure is significantly

greater than the amount of time saved by using this new structure.
8% (20) 3% (23)

Total 43% (108) 21% (155)
Suboptimal Algorithm Design

Solving Irrelevant Subproblems A brute-force approach involving solving unnecessary subproblems
before checking constraints.

20% (51) 8% (58)

Misordering Subproblems Failing to explore subproblems according to a heuristic when doing
so would lead to efficiency gains.

15% (38) 5% (39)

Repeatedly Solving Subproblems Re-exploring parts of the problem space. 10% (24) 3% (25)
Reimplementing Builtins Implementing an algorithm instead of using a more efficient builtin. 4% (10) 1% (10)

Total 46% (116) 18% (132)
Table 1: Efficiency Bug Taxonomy and Overall Submission and Bug Frequency

and how long it would take the test case to be profiled. To help find
efficiency bugs for classification, we profiled each of the filtered
slow submissions for up to five minutes using a profiling tool based
on the Python line_profiler tool [7]. Profiling submissions high-
lighted the most time-intensive functions and lines, which informed
our qualitative descriptions of efficiency bugs.

3.2 Data Analysis
After filtering and profiling timeout submissions, two of the authors
collaboratively performed qualitative content analysis as described
by Richards and Hemphill [14]. In order to get a representative sam-
ple of efficiency bugs, we labeled submissions in batches consisting
of three random submissions from each of the five assignments until
we had labeled 50 submissions for each of the five assignments. We
iteratively developed our taxonomy by extracting common themes
as we labeled efficiency bugs with a description of their root cause.
When creating categories, we sought to create definitions that were
both precise enough to reduce potential overlap and general enough
to apply to contexts outside of the assignments we examined.

We took a number of steps to maintain consistency between the
two authors who labeled the efficiency bugs, including labeling
the 45 submissions in the first three batches together to create an
initial taxonomy and a list of common bugs for each category and

assignment. Once the initial taxonomy was established, both label-
ers independently labeled the 250 randomly selected submissions,
overlapping on 76, with the first author labeling 142 additional
submissions and the second labeling the remaining 26.

After the initial labeling was completed, we consolidated the 342
bugs from the 76 submissions labeled by both authors down to 131
duplicate bugs and 80 unique bugs (43 from the first author and 37
from the second author). We verified bugs that were unique and
created a summary of labeling differences. Then, we analyzed all
submissions again specifically for those bugs to ensure consistency.

After examining the frequency of efficiency bugs across the 250
submissions, we adjusted the categories so that all labels were
time-related and most subcategories were present in at least 5% of
samples across multiple assignments. Once we were satisfied with
the final taxonomy, we relabeled all of the recorded bugs.

Throughout the labeling process, we focused on recording all
efficiency bugs that presented potential barriers to the code passing
within the time limit. The number of efficiency bugs labeled for a
single submission varied from as few as one to as many as eight.
Some submissions had multiple unrelated occurrences of the same
kind of efficiency bug recorded. If in doubt of the severity or cause
of an issue, we tested fixing a submission, and would only record
the bug if there was a noticeable difference in runtime.
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4 Results
This section presents the results of the qualitative code analysis:
first the taxonomy of efficiency bugs, and thenwhich bugs tended to
occur in particular assignments and which occurred more generally
across assignments.

4.1 Efficiency Bug Taxonomy
Analysis of the 250 randomly-selected timeout submissions resulted
in 753 time-related efficiency bugs, which we categorized into three
main categories and 12 subcategories. The definitions of subcate-
gories and their frequencies can be found in Table 1. The following
sections provide further details and illustrative Python examples.
Additional examples can be found in a copy of the efficiency reading
we created for our students based on this work[3].

4.1.1 Superfluous Computation. We defined superfluous computa-
tion as code that can be deleted or computation that can be repeated
fewer times without sacrificing correctness. The first two bugs in
this category, Failing to Cache and Failing to Short Circuit, together
accounted for almost a third of all labeled efficiency bugs.

Failing to Cache: Fixing this bug generally requires caching
or making use of cached values. The code below is an example of
both calling slow_call(x)multiple times instead of caching it, and
calling slow_call(y) again instead of using the value in new_y.
new_y = slow_call(y) # unused cached value
if slow_call(x) < 0: # Fix: cache slow_call(x)

foo(slow_call(x), slow_call(y)) # Fix: use new_y
else:

bar(slow_call(x), slow_call(y))

Failing to Short Circuit: Fixing this bug generally requires
adding conditional checks to exit earlier, or checking less expensive
exit conditions sooner. For example, in the code below, we can break
the loop as soon as we find the first spelling error.
has_error = False
for word in book:

if spelling_error(word):
has_error = True # Fix: break here

Executing Dead Code: Fixing this bug requires deleting un-
necessary code. 17% of observed instances of this bug involved
debugging-print statements, which are easy to find and remove.
However, sometimes this bug involved other unnecessary addi-
tional computation, as in the if statement below.
for r in range(height):

for c in range(width): # Fix: remove conditional
if 0 <= r < height and 0 <= c < width:

array[r][c] += 1

Extra Copying: This bug can generally be fixed by not copying
unmodified structures or by modifying existing structures instead
of creating new ones. For instance, the following code snippet has
five instances of unnecessary copying.
names = []
for fname in first_name_strings[:]: # remove [:]
for lname in last_name_strings[:]: # remove [:]

full_name =str(fname)+" "+str(lname) # no str
names = names + [full_name] # list + list copies

Failing to Hoist: This efficiency bug can be fixed by moving
computation that only needs to get executed once outside of re-
peated structures. While this bug was often observed in recursive
functions, an iterative example is shown below.
def update(pond, moves):

for direction in moves:
frog = get_frog_loc(pond)
pond_size = get_pond_size(pond)
# Fix: previous two lines go before loop
frog = move(frog, direction, pond_size)
# Fix: line below goes after loop
pond = make_pond(pond_size, frog)

return pond

Extra Loop / Recursive Overhead: Fixing this efficiency bug
generally requires combining loops or recursive functions. For ex-
ample, the adjacent loops with identical loop-control logic below
can be combined into a single loop.
xo_matrix = []
for i in range(100_000):

xo_matrix.append("X")
for i in range(100_000): # Fix: use one loop not two

if (i % 2) == 1:
xo_matrix[i] = "O"

4.1.2 Suboptimal Data Structure Design. We defined suboptimal
data structure design as creating or using a data structure that has
slow operations, when a more efficient alternate structure exists.

Slow Data Structure: This bug can generally be fixed by chang-
ing the data structure to make frequent operations more efficient.
Like the example below, nearly 32% of Slow Data Structures that
we labeled used a list or tuple instead of a set.
unique_numbers = [] # Fix: use a set
for phone_number in call_history:

if phone_number not in unique_numbers:
unique_numbers.append(phone_number)

Expensive Data Transformation: Fixing this bug generally
involves finding a more efficient way to transform the data or
simply not creating the structure. The example below creates a
completely extraneous data structure, which was relatively rare in
the submissions we examined.
chosen_num = int(input("Pick a number: "))
ten_million_nums = set(range(10_000_000))
num_in_range = chosen_num in ten_million_nums
# Fix: replace with 0 <= chosen_num < 10_000_000

4.1.3 Suboptimal Algorithm Design. We define a suboptimal algo-
rithm as a correct algorithm that does not take advantage of problem
characteristics that would enable a significantly more efficient al-
gorithm. This includes code that fails to fully use optimizations or
problem constraints, resulting in additional computation.

Solving Irrelevant Subproblems: This bug can generally be
fixed by enforcing constraints to avoid wasted computation. In the
code below, we can fix the efficiency bug by limiting the area of
possible moves to adjacent horizontal or vertical locations instead
of all locations.
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def get_valid_moves(board, loc):
valid_moves = set()
for r, c in get_all_locations(board):

distance = abs(r - loc[0]) + abs(c - loc[1])
if distance == 1:

valid_moves.add((r, c))
return valid_moves

Misordering Subproblems: This efficiency bug can often be
fixed by using a valid heuristic to select the next subproblem. In the
code below, it would be faster to loop through words from shortest
to longest and stop at the first word that starts with "z".
shortest_z_word = None
for word in longest_to_shortest_words:

if word[0:1] == "z":
shortest_z_word = word

Repeatedly Solving Subproblems: This efficiency bug is typi-
cally fixed by exploring the problem space in a way that avoids re-
dundant work by keeping track of which parts of the problem space
have been visited previously, as the example below shows.
all_pairwise_sums = set()
for i in range(0, len(nums)):

for j in range(0, len(nums)): # Fix: start at i
all_pairwise_sums.add(nums[i] + nums[j])

Reimplementing Builtins: Fixing this bug involves using an
existing operation in the programming language or library. While
this category represented only 1% of recorded efficiency bugs, it
is an example of a language-specific bug that depends on both the
available builtins and how efficiently they are implemented.
has_zebra = False
for word in animal_set:

if word == "zebra": has_zebra = True
# Fix: has_zebra = "zebra" in animal_set

4.2 Assignment-Specific vs. General Bugs
Because the five assignments we examined covered a diverse ar-
ray of topics, we expected variation by assignment in frequency
of efficiency bug categories, especially across the subcategories of
suboptimal data structure design and suboptimal algorithm design.
Results in Table 2, which show the percentage of selected submis-
sions that had at least one occurrence of a particular bug, indicate
that this was indeed the case.

The assignmentswe selected covered a variety of topics including
graph search, data transformation, recursion, backtracking, and
object-oriented programming. Specific assignment names, topics,
and brief descriptions are listed below.

• Bacon Number (graph search, data transformation): Given
a raw database of actors, students first transform data. They
then implement functions that find actors with a certain
"Bacon" number and find a shortest path between actors.

• Sokoban (graph search, data transformation): Students im-
plement an interface for a Sokoban game, then find the short-
est sequence of moves that can solve the puzzle.

• Minesweeper (recursion): Given an inefficienct 2D imple-
mentation of minesweeper with bad style, students refactor
the 2D version and implement an N-Dimensional version.

• SAT Solver (backtracking, recursion): Given a CNF formula,
students implement an algorithm to either find a mapping
of variables to values that satisfies the formula or determine
that no such mapping exists.

• Word Filter (object-oriented programming, recursion): Stu-
dents implement a prefix-tree class to efficiently autocom-
plete words and filter words that match a wildcard pattern.

The sections below discuss the assignment-dependent and assign-
ment-independent subcategories of each of the threemain efficiency
bug classes.

4.2.1 Superfluous Computation. Some bugs in this category were
prevalent in specific assignments, likely as a result of assignment de-
sign. For example, a majority of selected Minesweeper submissions
had Failing to Hoist bugs likely because the assignment was de-
signed with a single step function that both uncovered squares and
determined the state of the game. As students recursively uncov-
ered squares surrounding zeroes, they often repeatedly performed
expensive game state checks. If we had designed Minesweeper to
have a separate game state check function like in Sokoban, Failing
to Hoist would likely not have been an issue at all. As another
example, Extra Copying was most common in Sokoban because
students often preemptively copied their game representation on
every move before checking whether an obstacle would prevent
a move. Extra Copying bugs were less common in Minesweeper
because the game state was mutable.

The most common bugs of Failing to Cache, Failing to Short
Circuit, and Executing Dead Code appeared across all assignments
to varying degrees. The frequency of Failing to Cache bugs in par-
ticular may be a function of the fact that all our assignments feature
interrelated functions. For example, in Sokoban, Minesweeper, SAT
Solver, andWord Filter, many operations were performed by calling
helper functions. While Executing Dead Code sometimes involved
print statements, it was more often caused by over-complicating
the problem. This was especially easy to do in the recursive as-
signments because in addition to being more complex than earlier
assignments, students new to recursion often added unnecessary
base cases and recursive cases.

4.2.2 Suboptimal Data Structure Design. Of the five assignments
we looked at, Slow Data Structures were most present in Bacon
Number and Sokoban, likely because by design computing the
neighbor states efficiently during a graph search required trans-
forming the original Slow Data Structure that we gave students.
Occurrences of Slow Data Structures were far less frequent in the
other assignments, likely because students were instructed to im-
plement or return certain data structures. Instances of Slow Data
Structures in the other assignments involved mostly using lists
instead of sets to remove duplicates or do repeated containment
checks. This may suggest that when given Slow Data Structures
and design freedom, students find designing better data structures
particularly challenging.

4.2.3 Suboptimal Algorithm Design. Frequencies of subcategories
of this efficiency bugweremostly tied to particular assignments. For
example, Misordering Subproblems was specific to SAT Solver be-
cause one of the suggested optimizations in the assignment writeup
was assigning unit clauses first, so students failing to take that hint
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Efficiency Bug Category Bacon Number
% Subs (/50)

Sokoban
% Subs (/50)

Minesweeper
% Subs (/50)

SAT Solver
% Subs (/50)

Word Filter
% Subs (/50)

Superfluous Computation
Failing to Cache 12% (6) 40% (20) 84% (42) 24% (12) 20% (10)
Failing to Short Circuit 62% (31) 28% (14) 48% (24) 46% (23) 18% (9)
Executing Dead Code 14% (7) 12% (6) 54% (27) 32% (16) 48% (24)
Extra Copying 8% (4) 78% (39) 12% (6) 22% (11) 10% (5)
Failing to Hoist 2% (1) 0% 58% (29) 0% 4% (2)
Extra Loop / Recursive Overhead 14% (7) 2% (1) 10% (5) 0% 0%

Total 80% (40) 88% (44) 96% (48) 78% (39) 78% (39)
Suboptimal Data Structure Design
Slow Data Structure 68% (34) 90% (45) 24% (12) 0% 20% (10)
Expensive Data Transformation 22% (11) 8% (4) 8% (4) 0% 2% (1)

Total 72% (36) 92% (46) 30% (15) 0% 22% (11)
Suboptimal Algorithm Design
Solving Irrelevant Subproblems 0% 0% 62% (31) 0% 40% (20)
Misordering Subproblems 0% 0% 0% 76% (38) 0%
Repeatedly Solving Subproblems 32% (16) 10% (5) 4% (2) 0% 2% (1)
Reimplementing Builtins 0% 0% 0% 0% 20% (10)

Total 32% (16) 10% (5) 64% (32) 76% (38) 50% (25)
Table 2: Efficiency Bug Frequency in Selected Submissions, Grouped by Assignment

would have this kind of bug. Repeatedly Solving Subproblems was
most frequent in Bacon Number and Sokoban due to submissions
that explored unnecessary paths because they failed to track which
nodes had already been visited. Interestingly, this bug was three
times more frequent in Bacon Number than in the later Sokoban
assignment, suggesting that students were better at avoiding this
bug once they were more familiar with breadth-first search. Solv-
ing Irrelevant Subproblems mostly occurred in Minesweeper and
Word Filter due to missed opportunities to constrain possible sub-
problems with the available data that were either not specified or
overlooked in the assignment writeup. Reimplementing Builtins
was mostly found in Word Filter due to submissions that sorted a
list of words by their frequency with a handwritten quadratic sort
instead of using Python’s builtin sort method.

4.3 Threats to Validity
Apotential threat to validity is selection bias, since this study looked
only at submissions to a specific set of assignments in a CS2 course
at a single university, with limited test cases partially due to pro-
filing time-limitations. Some assignments included optimization
hints, which may have reduced the frequency of related bugs. Some
assignments advised students to avoid premature optimization and
implement a brute-force solution first, so some of the submissions
examined may have been intentional brute-force solutions that do
not reflect student misconceptions. We excluded some submissions
with runtime efficiency bugs from consideration because they ex-
perienced other failures on the grading server (e.g., running out of
memory due to excessive print statements or large data structures
rather than timing out).

Another threat to validity is labeling error, since identifying
the cause and the severity of efficiency bugs can be challenging.
There may also be labeling uncertainty because of possible overlap

between categories, such as between Failing to Cache and Repeat-
edly Solving Subproblems. We mitigated these threats by using
a performance profiler, by test-fixing a bug when in doubt, and
by having multiple authors collaborate on a large fraction of the
sample. However, the profiler ran with a fixed time limit and did
not always measure all lines of extremely slow code. We also some-
times labeled efficiency bugs according to our course objectives of
what students should be able to achieve given the provided course
materials and assignment description, not by what the most optimal
solution is. For example, the Minesweeper game state check can
be optimized by caching the number of remaining squares, but we
expected students to loop through the positions on the board and
short circuit as soon as they found a non-mine square that was still
covered.

5 Conclusion
Our investigation into the kinds of efficiency bugs that students
make yielded a novel efficiency bug taxonomy in Table 1 as well
as related bug examples. Table 2 shows that while most subcate-
gories were present across multiple assignments, the frequency of
each subcategory tended to vary by assignment. This suggests that
careful assignment design may lead students to encounter specific
efficiency bugs.

There are many avenues for further work that may improve
course design and student learning outcomes. For example, quanti-
fying the impact of different kinds of efficiency bugs could help de-
termine which ones are most pedagogically relevant. Also, looking
at how long various bugs take students to fix, which bugs students
fail to fix the most, or comparing the efficiency bugs in slow sub-
missions to median and fast submissions may provide insight into
which efficiency bugs are most persistent or lowest impact.
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