
EdVidParse: Detecting People and Content in
Educational Videos

by
Michele Pratusevich

S.B., Massachusetts Institute of Technology (2013)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2015

c○ Michele Pratusevich, MMXV. All rights reserved.
The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2015
Certified by. .

Robert C. Miller
Professor, Department of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Antonio Torralba
Associate Professor, Department of Electrical Engineering and

Computer Science
Thesis Supervisor

Accepted by .
Albert Meyer

Chairman, Department Committee on Graduate Theses

EdVidParse: Detecting People and Content in Educational

Videos

by

Michele Pratusevich

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2015, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

There are thousands of hours of educational content on the Internet, with services
like edX, Coursera, Berkeley WebCasts, and others offering hundreds of courses to
hundreds of thousands of learners. Consequently, researchers are interested in the ef-
fectiveness of video learning. While educational videos vary, they share two common
attributes: people and textual content. People are presenting content to learners in
the form of text, graphs, charts, tables, and diagrams. With an annotation of people
and textual content in an educational video, researchers can study the relationship
between video learning and retention. This thesis presents EdVidParse, an automatic
tool that takes an educational video and annotates it with bounding boxes around
the people and textual content. EdVidParse uses internal features from deep convo-
lutional neural networks to estimate the bounding boxes, achieving a 0.43 AP score
on a test set. Three applications of EdVidParse, including identifying the video type,
identifying people and textual content for interface design, and removing a person
from a picture-in-picture video are presented. EdVidParse provides an easy interface
for identifying people and textual content inside educational videos for use in video
annotation, interface design, and video reconfiguration.

Thesis Supervisor: Robert C. Miller
Title: Professor, Department of Electrical Engineering and Computer Science

Thesis Supervisor: Antonio Torralba
Title: Associate Professor, Department of Electrical Engineering and Computer Sci-
ence

Acknowledgments

To those at MIT supporting my work: this work would not have been possible by

the generosity of Rob Miller and the entire User Interface Design group at CSAIL -

Carrie Cai, Juho Kim, Elena Glassman, and Max Goldman. They took me in when

I was looking for a project and have been supportive ever since. Antonio Torralba

and the Vision group also took me in and let me participate in some of the most

innovative computer vision research happening at MIT. Thanks to Rebecca Krosnick

for putting up with bad early prototypes. And thanks to Bryt Bradley for always

smiling whenever I walk in the door.

To those who made MIT possible: thanks to my parents, Tatyana and Gennady,

who encouraged me in the pursuits of my dreams, and have to put up with my taste

for adventure. And of course, thanks to my ever-supporting boyfriend Robin, who is

always a loving, snarky sounding board.

Contents

1 Introduction 6

2 Related work 8

2.1 Educational videos . 8

2.2 Object detection and scene recognition 11

2.3 Convolutional neural networks (CNNs) 14

2.3.1 AlexNet . 15

2.3.2 Improvements on AlexNet . 18

2.4 Evaluation metrics . 19

3 EdVidParse 23

3.1 System overview . 23

3.1.1 Design goals . 24

3.1.2 CNN feature extractor . 24

3.1.3 Feature processor . 26

3.1.4 Training and evaluating the bounding box estimator 31

3.1.5 Potential improvements . 33

3.2 Advantage over R-CNN . 34

3.2.1 Using object proposals for bounding box estimation 36

4 Applications 38

4.1 Classifying video production style . 38

4.1.1 Problem . 38

4

4.1.2 An educational video dataset 39

4.1.3 Results . 42

4.1.4 Discussion . 43

4.2 Extracting people and content for VideoDoc 45

4.2.1 Problem . 45

4.2.2 Object annotation dataset . 46

4.2.3 Results . 47

4.2.4 Discussion . 47

4.3 Reconfiguring picture-in-picture videos 51

4.3.1 Problem . 51

4.3.2 Results . 51

5 Discussion and Conclusion 54

5.1 Comparison of EdVidParse and R-CNN 54

5.2 Conclusion . 55

A Figures 57

5

Chapter 1

Introduction

Educational video content on the Internet is increasing at an exponential rate. In

November 2014, 182 courses were offered on edX (edx.org), with over 1000 hours of

video content. By June 2015, 516 courses were offered with over 6000 hours of video.

Other massively open online course (MOOC) providers like Coursera (coursera.org)

and Udacity (udacity.com) offer more than 1000 courses each at any given time.

YouTube is the most common video hosting and distribution platform, with the recent

YouTube EDU initiative hosting over 700,000 educational videos.

With this influx of content, researchers are interested in analyzing the effectiveness

of video learning. This includes exploring the relationship between video composition

and student engagement, and exploring alternate ways of presenting videos to learners

at different stages of the learning process. For example, systems that effectively

summarize videos or automatically extract slides can be beneficial for skimming or

reviewing, while reconfiguring videos for fast playback can be good for initial viewing.

While educational videos vary, most share two common attributes: people and

textual content. People are presenting material, performing an experiment, and pro-

viding a face to a new content. Textual content makes up the bulk of educational

video material - graphs, tables, charts, images, formulas, and text present informa-

tion. The composition of people and content in videos can give information about the

type of video being watched. For example, if there is less textual content, the video

is more likely about a topic from the humanities. Or if the size of the person rela-

6

edx.org
coursera.org
udacity.com

tive to the rest of the frame is small, the video is more likely a classroom recording.

Videos where a lecturer’s head features prominently are more engaging for learners

[18]. Being able to effectively identify people and textual content in videos can be a

useful tool in analyzing educational videos.

Computer vision techniques for analyzing images and videos have drastically im-

proved in the last few years with the increasing use of neural networks, improving

performance in vision tasks such as object detection and scene classification. The

structure of an educational video is relatively consistent (when was the last time you

saw a tropical beach scene in a traditional classroom recording?), so computer vision

techniques specifically tuned for educational video applications can be effective.

This work develops a computer vision pipeline called EdVidParse for identifying

people and regions of salient textual content inside a video. EdVidParse1 finds people

and textual content such as graphs, text, and drawings inside video frames. It also

classifies the frame into a scene or composition type - for example whether it is

a classroom-recorded lecture, a studio recording, or a synthetically-created image.

These annotations allow researchers to answer questions related to the prevalence of

people and textual content in educational videos. EdVidParse turns a video into a

JSON annotation in near-real-time, taking about one second of processing per second

of video. Alternative approaches to object detection in videos can be more accurate,

but EdVidParse trades off some accuracy in exchange for speed.

This work also presents a dataset of object and composition annotations specif-

ically in educational videos for training and testing models that achieved a mean

average precision (AP) of 0.437 for object detection and 86 percent classification ac-

curacy for scene classification. EdVidParse uses a new approach for training bounding

box estimators using internal neural network features.

Three applications of EdVidParse are presented as case studies: automatically

annotating videos by production style, detecting people and content bounding boxes

for a textbook-like video interface, and reconfiguring a picture-in-picture video into

a video of just slides.

1Code can be found at https://github.com/uid/ed-vid-parse

7

https://github.com/uid/ed-vid-parse

Chapter 2

Related work

2.1 Educational videos

Because more students are learning online and through video, researchers are inter-

ested in maximizing the effectiveness of these videos by exploring video composition,

summarization, and content extraction techniques. Questions about which types of

videos are more engaging, or how to make videos useful to learners after they have

already been initially watched, are critical to increasing the effectiveness of online

learning.

Guo et. al. [18] explores the relationship between video production style and

student engagement. Videos from 4 courses were classified into 6 types of production

styles, or composition: slides, code (a demo being worked through), Khan-style (for-

mulas being incrementally derived without seeing a person), classroom (a recorded

lecture video), studio, and office desk. The study classified each video into a particu-

lar category, not taking into account videos that changed styles, say from a close-up

of an instructor’s face to a Khan-style derivation. The researchers found that videos

with high production value, namely shooting videos in a special video production stu-

dio, did not result in greater student engagement and therefore might not be worth

the money. The production styles proposed by Guo are a way of labeling a video

in terms of composition, used as a foundation for the video style classification dis-

cussed in Section 4.1. Having a system that can automatically classify each frame

8

of a video into a production style can allow faster data collection and more granular

video analysis for engagement studies.

Eye-tracking studies with learners correlate learning with video frame content,

with the goal of giving advice to content creators about effective video strategies.

These studies show that it is easier for students to look at uncluttered text on a slide

[35] and that students prefer watching videos with an instructor’s face, even if it does

not increase recall of the material [25]. To perform these studies, each pixel of the

frame needs to be labeled as belonging to a few groups, like person, background, or

text material, and is usually done by drawing outlines of objects in the frame by

the researcher. Having a technique that can automatically annotate objects to be

manually fixed can save time for researchers performing further studies.

If classroom lectures are recorded and posted to the web, a problem is that lectur-

ers often stand in front of relevant notes on a blackboard. While giving a classroom

lecture, this is less of a problem, since students can ask for clarification when needed.

However, this is not ideal in an online environment, where there is not the guarantee

of a community that can answer questions. Instead of the lecturer changing their

presentation style, alternate means of recording classroom lectures such as EduCase

[20] present systems that work with the normal flow of classroom instruction. The

EduCase system records an instructor in a classroom with multiple cameras and a

depth sensor, automatically removing the lecturer from in front of the blackboard

notes and reconfiguring the video to present both the lecturer and the notes in one

video stream that is ready to post online. Being able to remove a lecturer from a

video can make a recorded video more suitable for an online environment.

Because MOOCs are offered online to a massive audience, the data from student

clicks, watches, rewinds, etc. provides an estimate of learner engagement with a

particular video. Kim et. al. [23] aggregate student interaction data and correlate

it with specific points in videos to understand why interaction peaks happen. For

example, students tend to re-watch sections of video where the lecturer speaks too

fast, or they tend to skip over longer boring sections. Being able to annotate more

videos with video composition data can give more clues about the reasons behind

9

some interaction peaks.

Meanwhile, a goal of the Berkeley Video Digests system [32] is to provide an

interface for effectively skimming a video or finding a point of interest. Much like

chapter headings in books, Video Digests uses a combination of automatic, manual,

and crowdsourced techniques to split an educational video into sections that can then

be combined with a transcript in a skimmable format. Improving the automatic

sectioning techniques can offer improvements for students reviewing material, since

the current system does not take video composition into account.

Other crowd-sourced methods attempt to give section headings to video segments

specifically in how-to videos [43]. These videos have a natural progression of steps,

making it easier to verify with a crowd and offering natural breakpoints throughout

the video. It is possible that clues within the video itself can offer a starting point

for these section-level annotations.

In addition to summarization, the video watching interface can be combined with

sectioning and transcripts to give the student a more granular view of a video, such as

in the VideoDoc interface [28]. A lecturer can then design the video interface without

the constraints of a single, linear experience by combining two potential video streams

and lecture notes or transcripts in the same page. Sections are naturally broken up

by video type, so a segment with a lecturer’s head might be followed by a segment

with just a slide. Being able to automatically annotate textual content and lecturer’s

head in the videos can save the lecturer work in splitting up the video view.

Another problem for learners with online videos is searching within a video for a

relevant section. Text-based OCR solutions are common, using text displayed in the

video as a description of what is happening inside the video itself. Yang et. al. [45]

extract as much text as possible from the videos and apply OCR, so textual keywords

can be used to search within a video. Yu et. al. [47] take this approach further to

index an entire video with a set of keywords extracted from OCR on the intra-video

text. While this approach works well for videos with high textual content, videos

that rely on a lecturer speaking or doing a demonstration may benefit from visual

cues within the videos. There is no way for a learner to search within a video based

10

on purely visual cues.

To solve the problem of video discovery, the Talkminer project [1] tries to aggregate

educational videos into one search engine. Specifically, the focus is on extracting full-

frame lecture slides from talks that are OCR’ed and indexed into a custom search

engine. Users can then search for specific keywords that will return full videos around

the desired slide to provide contextual information. The limitations are that videos

with heavy blackboard work or slides that appear smaller in the frame are not indexed

well.

Building further on the slide extraction idea, Wang et. al. [42] and Kayal et.

al. [22] both take advantage of the similar structure in traditional lecture slides to

further semantically extract information or build pages of notes from lectures. As

lecturers become more innovative in their slide presentations, or even use them less

frequently in their lecture videos, these approaches will be important for indexing

previously-posted videos, and the techniques used by Wang and Kayal can be applied

to videos with similar structure. However, a more general framework is needed for

extracting content from general online educational videos.

Because researchers are interested in answering questions that relate to video

structure, they can all benefit from being able to automatically annotate videos with

areas of textual content and areas where people occur. These video annotations can

help in answering questions about student engagement and help in designing interfaces

for students interacting with videos.

2.2 Object detection and scene recognition

Parsing the visual structure of an educational video relies on a number of computer vi-

sion techniques that were developed in literature in the more general case. Techniques

have been developed to solve a variety of tasks with high speed and accuracy:

∙ object recognition - Classify an image of a single object into an object class,

like dog, desk, book, etc. Features are first extracted from the image, then

classified. Standard benchmarks include the ImageNet database [6].

11

∙ object detection - For an image, find bounding boxes around all instances of

a given object class in that image. Standard benchmarks include the PASCAL

database [11].

∙ scene recognition - Classify an image into a scene category, such as classroom,

beach, office, etc. Standard benchmarks include the SUN database [44].

EdVidParse does both object detection and scene recognition - it detects peo-

ple and textual content in videos, in addition to classifying video frames into video

production style.

Hand-crafted features that rely on interest points in an image such as corners per-

formed well at computer vision tasks until neural networks became popular. Features

such as histograms of oriented gradients (HOG) [5] and SIFT [30] for static images

and spatio-temporal features for video [26] perform well in ideal conditions, but are

not robust to lighting changes, object occlusion, and viewpoint change. Part-based

models attempt to account for these shortcomings by relying on a mix of parts for

an object - so for example a person can be detected even if only his legs are seen.

Scene recognition suffered the same shortcomings with the use of GIST features [31]

- the features were not very robust to changes in viewpoint, lighting, or occlusion.

Because educational videos are different enough in lighting and viewpoint, especially

when trying to find people in the videos, more general features extracted from neural

networks were used instead of hand-crafted features.

For object detection, an additional challenge is estimating the bounding box where

an object occurs. Early approaches simply generated all possible image subregions

and performed image classification on each region separately. A key improvement

over exhaustive sliding-window search approaches was the idea of using non-maximal

suppression to filter out high-scoring detections that significantly overlap previously-

detected regions [13]. While this technique was originally used as part of a person

classifier using part-based models, it is now generally used in all object detection

tasks. EdVidParse relies heavily on object detection methods to find people and

content effectively in video frames.

12

Instead of exhaustive enumeration of all possible object boxes, the idea of gener-

ating a set of object proposals, or regions where there is a high probability of finding

an object, were developed. An object proposal algorithm should have high recall -

the correct detection should be in the set of boxes it produces - but it can generate as

many extra boxes as necessary, since classification will be performed on each object

proposal anyway. Methods such as selective search [41] and edge boxes [50] are used

to generate object proposals. These methods take advantage of the observation that

a box with an object in it has a high density of edges inside the box. EdVidParse

uses edge boxes and the associated code [7, 8, 50] for generating object proposals,

notably in the R-CNN comparison described in Section 5.1.

For the classification step in all computer vision tasks, there are a number of

available methods, with support vector machines (SVMs) being the most commonly

used. SVM classification and training is done using the Liblinear (for linear kernels)

and LibSVM (for other kernels) libraries [4, 12]. Typically grid search is used for

finding a set of acceptable SVM parameters. This project uses the Spearmint1 package

for hyperparameter selection, such as misclassification tolerance and bias [15, 36, 37,

38, 40]. Spearmint takes advantage of Bayesian optimization techniques to estimate

optimal hyperparameters for a task, removing the need for arbitrary grid search for

optimal parameters and decreasing training time. The best-performing algorithms on

the PASCAL and SUN datasets use SVMs for classification, so EdVidParse uses this

approach as well.

Another advantage of SVMs are that hard negative mining can be used to increase

accuracy [13, 39]. In hard negative mining, an SVM classifier is initially trained with

a dataset, then incrementally improved with negative examples. For example, say an

SVM classifier is trained to identify whether the image is a dog or not. It is initially

trained with 100 positive examples of dogs and 100 negative examples of dogs. To

improve the accuracy of the classifier, thousands of random image crops from 1000

images known to not have any dogs in them are generated, and features are extracted

from all those image crops. These negative examples are classified with the original
1https://github.com/HIPS/Spearmint

13

https://github.com/HIPS/Spearmint

classifier, and those that are incorrectly classified are added as negative examples to

the training set. This way, an initial classifier is incrementally improved only with

negative examples it misclassifies.

Because EdVidParse is an object detection pipeline, techniques such as object

proposals and classification with SVMs are key components to its effectiveness.

2.3 Convolutional neural networks (CNNs)

All the records set using hand-crafted features for computer vision tasks were over-

taken by the use of convolutional neural nets (CNNs). The ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC) is an annual object recognition challenge

where participants had to assign one of 1000 classes to a particular image of an ob-

ject, and is often used as a performance benchmark for any new methods developed.

In 2012, a team submitted an entry that beat all previous performance benchmarks

in ILSVRC by nearly 20 percentage points, using convolutional neural networks as

the basis for an object classifier [27]. Trained on more than a million images, this

network learns more complex representations of images than was previously possible.

The network architecture proposed in this 2012 ILSVRC entry became the standard

in computer vision for any computer vision tasks and has been dubbed AlexNet.

Since then, all winning entries in the ILSVRC have been CNN-based [34]. The basic

principle of a convolutional neural network is that an image is fed through a series of

learned convolutional filters layered on top of each other.

Network training end-to-end is achieved quickly using backpropagation [33] over

millions of example images as training data. Additionally, the discovery and widespread

use of rectified linear units (ReLUs) instead of sigmoid activation functions for neuron

activations has led to better results at train and test time, according to Krizhevsky,

et. al. [27]. Sigmoid activation functions, used in the neocognitron [14] (the precur-

sor to neural networks) and in logistic regression classifiers, follow a sigmoid function,

whereas ReLU activation functions look like a hockey stick, as shown in Figure 2-1.

This means that when ReLUs are used, each individual activation is greater than

14

or equal to zero, with each positive value scaling linearly for that activation. This

leads to more stability during training time, and the property that each neuron only

lets through positive predictive values, rather than values that indicate absence. The

use of ReLUs allows for the bounding box estimation procedure described in Section

3.1.3.
ReLU

Sigmoid

Figure 2-1: A comparison of the rectified linear unit (ReLU) and sigmoid activation functions

During training, because the errors from the training set are propagated through

the network through back-propagation, this is called a backwards pass through the

network. During the testing or feature extraction phase, an image is simply forward-

passed through the network, performing the convolution and addition operations

according to the learned parameters, but without propagating errors back through

the network. EdVidParse takes advantage of fast forward passes through the network

to extract features.

2.3.1 AlexNet

LeCun et. al. proposed using backpropagation and stochastic gradient descent in

CNNs for hand-written digit recognition in the 1980s [29], and AlexNet built on these

early ideas. But the success of CNNs until 2012 was mostly hindered by processing

power and efficiency of training, so once this barrier was crossed, the effectiveness of

using CNNs for vision tasks greatly increased.

AlexNet was so successful and revolutionary at the ILSVRC that the starting-

point reference network architecture used by many research computer vision systems

15

exactly copies that of AlexNet. The network architecture is shown in Figure 2-2, and

the sizes of the internal network outputs are shown in Table 2.1. Layers always take

as input the output of the layers beneath them rather than the original image, so the

resultant convolution can be complicated to understand. However, taking the result

of a single 𝑛× 𝑛 output in a given layer, called a unit, can provide insight about the

contents of an image, as proposed by Zhou, et. al. [48], and discussed in Section 3.1.3.

Each unit is composed of individual activations - responses of a particular activation

to an image patch.

Figure 2-2: AlexNet neural network architecture used in feature extraction. Taken from
Krizhevsky et. al. [27].

The three most common layer types in these neural networks are convolutional

(conv) layers, pooling (pool) layers, and fully connected (fc) layers. A convolutional

layer takes an image patch and performs a convolution on it according to some learned

parameters. The resulting outputs taken together are the units for that network layer.

For example, the conv1 layer outputs 96 different units, all of size 55×55, computed by

taking a series of convolution on image patches. Later convolutional layers perform

the convolutions on activations of the units below them, not directly on an image

patch. A pooling layer takes as input a number of activations and performs an

operation on the activations to reduce the dimensionality. AlexNet uses max-pooling

layers, which take as input the activations from the layer below it and outputs the

maximum activation from the layer below. In this way, only the strongest activations

are propagated forward through the network, reducing the number of parameters that

need to be learned and the amount of data to be propagated through the system.

Other types of pooling include average-pooling and min-pooling, but AlexNet uses

16

Layer Total output size No. of units Activations
conv1 55× 55× 96 96 290400
pool1 27× 27× 96 96 69984
conv2 27× 27× 256 256 186624

2D units pool2 13× 13× 256 256 43264
conv3 13× 13× 384 384 64896
conv4 13× 13× 384 384 64896
conv5 13× 13× 256 256 43264
pool5 6× 6× 256 256 9216

1D units fc6 1× 1× 4096 4096
fc7 1× 1× 4096 4096
fc8 1× 1× 1000 1000

Total 1984 781736

Table 2.1: Output sizes of intermediate layers in the AlexNet reference network

max-pooling and this technique has become standard in deep network learning. Fully-

connected layers simply compute a linear function as a result of their inputs, like in

the neocognitron or linear logistic regression. The standard AlexNet architecture has

5 convolutional layers, 3 pooling layers, and 3 fully-connected layers. Typically, the

output of the top layer in any network (fc8 in the case of AlexNet) is a vector of

probabilities that perform the task the network was trained to do. In the case of

AlexNet, the task was classification of an image into 1000 classes, so the fc8 layer has

1000 outputs representing the probability of belonging to each of these 1000 classes.

The algorithm discussed for bounding box estimation in Section 3.1.3 takes advantage

of the properties of each type of network layer.

The Caffe software [21] makes training, testing, and using neural networks efficient

and easy. The standard AlexNet reference model, along with a number of other

network models, are freely distributed online in the Caffe format, making development

and testing straightforward. Because Caffe is open source, it is easy to distribute the

final EdVidParse system online.

17

2.3.2 Improvements on AlexNet

After the success of AlexNet in the ILSVRC, CNNs were shown to be useful as general

feature extractors [2, 9, 10, 46]. In general this is accomplished by passing an image

through the network, and instead of looking at the output fc8 layer, the fc7 layer

(which has 4096 output values) would effectively transform an image into a vector of

4096 values that can then be fed into any kind of classification, regression, or other

system for tasks such as classification, bounding box estimation, image segmentation,

and others.

As an extension to CNNs, the Region-CNN (R-CNN) algorithm was developed to

be competitive at the object detection task. The basic idea is to use detected regions

from an object proposal algorithm as inputs to the neural network, accomplishing

both object detection and object recognition simultaneously [16]. The goal of the

object proposal algorithm is to identify regions in an image that are likely to contain

an object, reducing the task of exhaustive search using a set of heuristics.

It has also been shown that using a baseline network like AlexNet and fine-tuning

it for a specific task such as scene recognition is effective and cuts down on train-

ing time [17, 49]. The increase in performance from fine-tuning AlexNet for scene

recognition outperformed the previous record set the use of hand-crafted features, as

shown by Zhou et. al. [49]. Zhou publicly distributes two networks - PlacesCNN

and HybridplacesCNN, that have been fine-tuned from AlexNet for scene recognition

and combined scene-object recognition respectively. Fine-tuning a neural network for

a set of images or classes that it was not originally trained to do is called domain

adaptation. In this work, fine-tuning was performed on a small set of scene-labeled

images with the PlacesCNN network as a base [49], described in Section 4.1.4.

The biggest obstacles with using deep learning for computer vision tasks are the

large amount of data needed for effective network training, long training times (often

requiring multiple GPUs and complex CUDA code), and finding the optimal set of

hyperparameters that govern learning. This work takes advantage of pre-trained

networks that, when combined with a limited amount of training data for a specific

18

domain, can be used to achieve good results. Whenever possible, hyperparameters

for learning rates and model selection were chosen based on parameters used by other

researchers.

Recently, internal network units were shown to correlate with specific object de-

tectors [48]. The main idea is that in networks trained for scene recognition, specific

units act as object detectors, with the upper layers of the network synthesizing this

information together to produce a final scene label. For example, in the PlacesCNN

network, unit 3 in the conv5 layer activates in image regions containing faces. Because

the main function of EdVidParse is detection of people and textual content (both are

objects), this idea is used to find person and text units in deep networks. These

units, most-studied in conv5 and pool5 layers, can be transformed into a mask on the

image to serve as an estimator for object recognition. We heavily take advantage of

this observation and develop a framework for constructing bounding box detection

estimates using these internal features, detailed in Section 3.1.3.

2.4 Evaluation metrics

A number of metrics such as cross-validation accuracy, classification accuracy, pre-

cision, recall, F1 score, and AP score, can be used to evaluate object detection and

scene recognition metrics, each with costs and benefits. For evaluation in this work

we choose to use classification accuracy for scene recognition and AP score for object

detection.

Cross-validation accuracy is used primarily for classification or recognition tasks.

In 𝑛-fold cross-validation, a training set is divided into 𝑛 groups, with each subset

of 𝑛 − 1 subgroups used for training and the last group used for testing. The cross-

validation accuracy is the average of the correct classification percentage from all the

test sets. With multiple classes, the mean cross-validation accuracy is the mean of all

the cross-validation accuracies among all classes. This metric has the advantage that

it gives a good estimate of test accuracy, since the hold-one-out approach simulates

real data. Additionally, cross-validation can be a way of simulating more data, since

19

𝑛− 1 classifiers can be trained and averaged instead of 1. However, this metric does

not take into account unbalanced training sets. For example, if a training set of

100 images only has 3 examples of class 𝐴 and 97 examples of class 𝐵, it is trivial

to achieve 97 percent accuracy by always guessing class 𝐵 as the predicted label,

no matter the train-test split. Even if the class labels were divided equally among

training and testing splits, the high accuracy can be misleading.

Classification accuracy is simply a measure of the percentage of correct classifica-

tions in a set of test labels. To combat class label imbalances, the test set should be

equal in all class labels. This way a 75 percent classification accuracy for one class is

comparable across all class labels.

Precision and recall can be used in evaluating object detection. For a given item

in the test set, it is either a positive or negative example of a particular class 𝐶. A

true positive is therefore an item in the test set that is both a member of 𝐶 and is

identified as a member of 𝐶. A false positive is an item identified as class 𝐶 but is in

fact not in class 𝐶. Precision is the ratio of true positives to true and false positives,

measuring how good the false positive rate is:

precision =
true positives

true positives + false positives
(2.1)

If a detection system achieves 100 percent precision (or a precision of 1), it means

that all the objects identified as class 𝐶 are in fact of class 𝐶, but it is not guaranteed

that all objects of class 𝐶 were found.

By contrast, recall is the ratio of true positives to true positives and false negatives,

measuring the retrieval rate of the algorithm:

recall =
true positives

true positives + false negatives
(2.2)

An algorithm with 100 percent recall (or a recall of 1) finds all instances of class 𝐶,

but is not guaranteed to find only those items. To trivially achieve 100 percent recall,

all possible items are identified as members of class 𝐶.

Because a classification algorithm wants to have both high accuracy and high

20

recall, the harmonic mean of precision and recall, or the F1 score can be used:

F1 = 2 · precision · recall
precision + recall

(2.3)

However, the drawback of this metric is that F1 only takes into account a specific

value of precision and recall - rather than the relationship of precision and recall at

different values. At 100 percent recall, there might only be 20 percent precision. But

at 50 percent precision there can be 100 percent recall. Because there is a specific

relationship between precision and recall, it makes sense to use a metric that takes

into account all pairs of precision and recall values.

0

1

AP score = 1

Recall

Precision

1

Figure 2-3: An ideal precision-recall curve with AP = 1

The AP score (or average precision) of a detector takes into account the relation-

ship between precision and recall. Average precision is defined as the area under the

precision-recall curve. An ideal detector has an AP score of 1, with a precision-recall

curve like shown in Figure 2-3. This curve is calculated by ordering the predicted

results by highest confidence and their corresponding correct labels, thresholding at

various values, and plotting the precision and recall at those thresholds. The more

that a precision-recall curve looks like this ideal, the better the detector. Instead

of looking at the precision-recall graph to determine effectiveness, the AP score is

used. The AP score metric has the advantage of taking into account all points on the

precision-recall curve.

Classification accuracy is the same metric for multiclass problems - it has the same

21

meaning as for one-class classification problems. To extend the AP score metric to

multiclass problems, the AP score for each class separately is averaged to compute a

mean AP score for the detector.

For scene recognition, test set accuracy is used, as is standard for multiclass clas-

sification problems. For object detection, AP score is used for both model selection

and final evaluation [24]. This is consistent with the metrics used in computer vision

literature for both classification and object detection.

22

Chapter 3

EdVidParse

3.1 System overview

EdVidParse is composed of two main pieces - the feature extractor and the feature

processor. The feature extractor turns a video into a set of numerical features, and

the feature processor either performs classification or bounding box estimation and

outputs computer-readable JSON.

Feature extractor Feature processorFeatures JSON

Input Output

Video

Figure 3-1: High-level system diagram for the video parsing tool

EdVidParse is written in Python, making it easy to quickly make changes to any

part of the pipeline. The feature extractor that uses neural networks uses the open-

source Caffe library [21] for efficient feature extraction and for ease of development.

The feature processor uses the Liblinear and LibSVM libraries for classification [4, 12],

and a custom-written interface for bounding box estimation.

There are two main tasks EdVidParse can accomplish - classification of a video

frame into a style, such as pure slide, picture-in-picture, classroom lecture, etc., and

detection of people and textual content in a video frame.

23

3.1.1 Design goals

EdVidParse has three main design goals:

∙ Accuracy - EdVidParse must be accurate enough to require minimal manual

adjustment. Without working fast, there is no reason for a researcher to use

a tool that accomplishes the same task that can be done more accurately by

hand.

∙ Speed - Small accuracy tradeoffs in exchange for speed are acceptable. For

a tool to be used, it must work reliably enough to need only minor manual

adjustments.

∙ Trainability - A tool that can be re-trained with new video data will be more

robust to changes in the future.

3.1.2 CNN feature extractor

The purpose of the feature extractor is to decompose the input video into frames,

then extract image features from each of those frames (see Figure 3-2). While all

video frames can be extracted from a video, in practice approximately one in every

five frames are used for feature extraction. This is because adjacent frames in high-

frame-rate videos do not change appreciably, but can instead cause noisy results later

in the pipeline.

Feature extractor

Frames

Image transform

Fill? Crop? Warp?

Mean subtract

BGR format

Network forward pass

AlexNet?

HybridplacesCNN?

PlacesCNN?

FeaturesVideo

Figure 3-2: System diagram for feature extractor

Before the image is sent through the network, it goes through a pre-processing step

where the image is converted from RGB-space to BGR-space and resized to 227×227

24

pixels, since this is the input type AlexNet requires. Additionally, the training image

mean (a standard image distributed with AlexNet) is subtracted. When images are

not square, there is a choice of cropping, filling, or warping the images to transform

them to 227 × 227. Cropping finds the largest centered square piece of the image

and scales it to the appropriate size. Filling scales the image as-is so that the largest

dimension fits, then fills in the rest of the space with black pixels. Warping just resizes

the image without any cropping or filling. Filling and cropping preserves in-image

ratios, but objects appear smaller and can be harder to detect. Warping utilizes the

entirety of both the original image and the final 227× 227 area. Figure 3-3 shows the

difference between the three pre-processing methods. Generally, the method chosen

is warping, as standard with the original AlexNet, except in specific situations, as

discussed in Section 3.2. With every rescaling operation there is a choice with the

kind of pixel interpolation to use - nearest neighbor, bilinear, bicubic, etc. A good

compromise between speed and accuracy that is used in the literature is generally

bilinear interpolation [16], except in the specific case described in Section 3.1.4.

(a) Original image, 1280× 720 pixels

(b) Fill, 227× 227 pixels (c) Crop, 227× 227 pixels (d) Warp, 227× 227 pixels

Figure 3-3: Difference between cropping, filling, and warping in the image pre-processing
step. Filling and cropping preserves in-image ratios, but objects appear smaller.

25

Network activations are calculated using one of four networks, depending on the

task. These are the standard AlexNet distributed with Caffe [21], PlacesCNN [49],

HybridPlacesCNN [49], and a custom network fine-tuned from Places (described in

Section 4.1.4). The feature extractor does a forward-pass of each frame, saving the

activations from all layers of the network. All these features are passed to the feature

processor. A choice in model selection is which network features to use. PlacesCNN is

tuned with scenes rather than objects, so we expect PlacesCNN to perform better than

AlexNet or HybridplacesCNN when looking for bounding box estimations, according

to recent work in object detection from scene prediction [48]. So in the model selection

stage, multiple networks are tried and the best one is used in practice.

3.1.3 Feature processor

Features

1D

fc6

fc7

fc8

2D

conv1

conv2

conv3

conv4

conv5

pool1

pool2

pool5

Classification

class A?

class B?

class C?

Bounding box

estimation

sum of weights

upsampling

yes

yes

no

JSON

Bounding box

estimates

Figure 3-4: System diagram for feature processor

The extracted features from a network forward-pass are either one-dimensional or

two-dimensional. From the architecture of AlexNet described in Figure 2.1 and Table

2.1, passing an image through the network in a forward pass results in over 10000

unit activations (and over 750000 individual activations) in 11 different layers of the

network. Two kinds of features emerge: (1) one-dimensional feature vectors, such as

fc6, fc7, and fc8, which are numerical image descriptors of the entire image, and (2)

2-dimensional units, such as a single set of activations for a specific convolutional or

26

pooling layer output. The one-dimensional feature vectors are used for classification,

and the two-dimensional units are used for bounding box estimation. See Figure 3-4

for a summary of the feature processor.

Classification, or feature processing from 1D feature vectors

The one-dimensional feature vectors are input into a trained SVM classifier that can

classify an entire image into a particular scene category. SVMs are used for ease of

use and training. In model selection, 10-fold cross-validation accuracy was used to

determine the best features and SVM parameters to use. The accuracy of the video

production style classifier is discussed in Section 4.1.3.

Mask generation from 2D units

The 2D units are used to generate a rectangular bounding box estimate from an

image. Each unit can be a mask over the entire image, based on the values in the

unit activations. Figure 3-5 shows an example of an image and the masks that are

generated through various operations on a specific unit. To generate a mask 𝑃 from

one unit, the unit is preprocessed in the opposite way that the image was preprocessed

before going into the network. In the simplest case, if the image was warped before

being passed through the network, the unit is upsampled and rescaled to the size of the

original image. If the image was initially filled then scaled, then the activation must

be scaled then un-filled (in other words, cropped). Because the goal is to estimate

a rectangular bounding box, nearest-neighbor estimation is used. In addition to

inverse preprocessing, the unit is thresholded, either before or after the upsampling.

The thresholding operation can be intuitively thought of as a filtering operation -

while the unit activations may contain all the true positive activations, they will have

small false positive activations that are amplified during the upsampling process, and

thresholding filters out potential false positives. The EdVidParse pipeline thresholds

after upsampling to avoid nonlinear optimization during training. A 2D unit is used

to generate an image mask that can then be used for bounding box estimation.

For example, Figure 3-5 shows an image containing a person, and the activations

27

(a) Original image

(b) Nearest neighbor interpo-
lation, no thresholding

(c) Thresholding, then near-
est neighbor interpolation

(d) Nearest neighbor interpo-
lation, then thresholding

(e) Bilinear interpolation, no
thresholding

(f) Thresholding, then bilin-
ear interpolation

(g) Bilinear interpolation,
then thresholding

Figure 3-5: A single unit serves as a mask on the original image. If the unit is trained to
recognize specific objects, the mask can give hints about where the object is located. An
image and the interpolated activations from unit number 138 in the pool5 layer of the Places
network is shown.

of a particular unit in conv5 known to have high activations for faces. The activations

are shown with a few options for interpolation and thresholding. Nearest neighbor

interpolation and thresholding are commutative operations, whereas bilinear interpo-

lation and thresholding are not.

Generating masks from the same unit activations over many images, it is com-

pelling that specific units activate to specific objects [48]. For example, as shown

in Figure 3-6, looking at the activations from unit 3 in the pool5 layer, it is clear

that this particular unit responds well to faces. More unit visualizations are shown

in Appendix A.

The examples shown in Figures 3-5 and 3-6 are masks generated from a single

unit, but multiple units can be used for more accurate estimation. Single-unit acti-

28

Figure 3-6: Activations from unit number 3 from the conv5 layer using the Places network
over 100 images in the educational video dataset.

vations, most often from pool5, have been studied as features to use out-of-the-box

for classification or regression tasks, as discussed in Section 2.3.2. However, we claim

that using a linear combination of unit activations will achieve better domain adap-

tation for object classes not in the original network training set, as in the case of

educational videos. In other words, a prediction mask 𝑃 is calculated from a subset

of unit activations by

𝑃 = 𝑊𝐹 =
∑︁

𝑓∈ units

(𝑤𝑓𝑓), sparse 𝑊 (3.1)

where 𝑓 is a single 2D unit activation and 𝑤𝑓 is a scaling weight for all activations

in that unit. The weights are learned for each specific object class, as described in

Section 4.2. Sparse weights are desired because it reduces overfitting of the units

29

in addition to reducing computation. The mask 𝑃 is fed into the bounding box

estimator.

EdVidParse uses a single threshold on 𝑃 rather than thresholding each individual

unit 𝑓 . An extension of this project using non-linear optimization techniques to learn

individual unit thresholds can potentially produce better results.

Bounding box estimation from an activation mask

An activation mask is turned into a bounding box estimate for an object with a series

of thresholding and estimation operations.

(a) (b) (c) (d)

Figure 3-7: Turning an activation mask 𝑃 into a bounding box. (a) The original image is
turned into a thresholded activation mask. (b) The mask is split into connected compo-
nents. (c) Multiple boxes are generated from each connected component. (d) Non-maximal
suppression is applied to find only the best boxes.

After calculating an activation mask 𝑃 for a particular object class, 𝑃 is thresh-

olded and split into connected components. For each connected component, a number

of bounding boxes are generated and a score is calculated for each box around the

activations of that connected component. Then, on the boxes generated for the en-

tire image, non-maximal suppression is performed to give an optimal set of bounding

boxes for the object in question. An example of taking an activation mask and turn-

ing it into a bounding box is shown in Figure 3-7. The threshold parameters are

learned based on the detection task, such as the person and content detection task

described in Section 4.2. To find the optimal noise-removal threshold, the mask 𝑃

is subject to multiple thresholds, and connected components are calculated for each

threshold.

30

The score 𝑆 for each box is the ratio between the average activation in the box and

the average activation in the image, shown in Equation 3.2. Non-maximal suppression

is then performed on all boxes at all thresholds with scores 𝑆.

𝑆 =

∑︁
𝑎∈box

𝑎∑︁
𝑎∈image

𝑎
· area of image

area of box
(3.2)

The highest-scoring bounding boxes above a score threshold are the bounding box

estimates for that object class.

3.1.4 Training and evaluating the bounding box estimator

The bounding box estimator does simultaneous detection and classification of a given

object class. The idea is to train the estimator with a small number of bounding-box-

annotated images of a particular class and rely on the internal network representation

of the image to generate the bounding box.

A training set annotated with ground-truth bounding boxes for people and content

is converted into binary masks of size 55× 55 (because this is the size of the largest

unit from conv1). An image without a positive example of the class is all black. These

binary ideal activation masks flattened into a matrix are the ground truth activations

𝐺. In an ideal world, they are the activations we would like to generate through

a linear combination of unit activations, which would map exactly to the bounding

boxes we want to generate. Because of the ReLU units used in each neural network

layer, the unit activations will have only positive values, meaning that an image

without a positive example will be returned all black from the network, mirroring our

training data.

All the training images are then passed through the network, and all the internal

unit activations are resized to 55× 55 using nearest-neighbor interpolation to create

the unit matrix 𝐹 .

We then learn a set of weights 𝑊 to minimize the pixel-level L2 error 𝐸 over all

images in the training set, shown in Equation 3.3. We want to L1-regularize the 𝑊

31

matrix to rely on a sparse set of units 𝐹 .

𝐸 =
∑︁

images

∑︁
pixels

(𝐺−𝑊𝐹)2 (3.3)

However, there is a practical limitation to computing this matrix 𝑊 in its entirety.

With a training set of merely 50 images, all the activations in the 2D units scaled to

equal size of 55 × 55 to construct the 𝐹 matrix will take approximately 2.5 GB to

store in memory, assuming a float takes 8 bytes of memory.1 This poses a problem for

finding an exact sparse solution of unit weights 𝑊 , because the least-squares solution

requires computing 𝐹 𝑇𝐹 , or having two copies of 𝐹 in memory simultaneously.

Instead, we propose a greedy algorithm that takes advantage of the simultaneous

optimizations we would like to do. First, iterate through all the units, solving the

least squares problem in Equation 3.3 with each unit one by one to find the unit that

yields minimum error. Then, for as many units as desired, iterate through the units

to solve the least squares solution for the growing list of best-fit units. The advantage

of this algorithm for finding optimal units is that it iteratively builds the units that

best complement one another. If a particular unit is chosen because it provides the

smallest error when it stands alone, the next maps are chosen specifically based on

the performance of the first. No assumptions are made about the weights - they do

not have to be positive. Negative weights imply that the activations of a particular

unit provide a negative estimate about the presence of the particular object class.

In practice, all the weights that are computed by this method are positive, implying

that the algorithm learns to construct positive activations rather than deconstruct

negative activations.

Once the weights 𝑊 are learned, the bounding box is estimated as described

in Section 3.1.3. Model selection is performed on how many units to use, which

features to use to extract the unit activations, and the final thresholding operation.

A bounding box can be extracted with weights and a threshold learned from this

method in under one second on a CPU, since only a single forward-pass through the
18 bytes ×772544 filters ×(55× 55) activations per filter ×50 images ≈ 2.5 GB

32

network is required.

One potential limitation to this greedy approach is that it is possible to find a

set of units that work better together than separately. For example, the first unit

found by the algorithm minimizes the pixel-level error, but it is possible that the two

units that would minimize the pixel-level error do not contain the first found unit.

To combat this and provide regularization with our training data, once the final units

are found, we train the weights using L1 regularization to ensure sparsity. It is not

guaranteed that a single unit will work for bounding box estimation, and in practice

the best performance occurs with 2 or 3 units.

3.1.5 Potential improvements

One limitation of the algorithm in its current state is that the algorithm does not take

into account the “random noise” responses of its activations. A given unit responds

with high activation to the image region that contains the object of interest, but it also

responds to other parts of the image with some small activations that can effectively

be considered noise. To account for this, we choose to learn a single threshold at the

end of the linear combination to filter out this activation noise. However, in practice

this is not as effective as thresholding a single set of unit activations before the weights

are learned. If a set of thresholds and weights is learned simultaneously for the units,

the problem becomes a non-linear optimization problem that is hard or impossible

to solve by analytical means. Early experiments with learning unit weights yielded

thresholds that were close to zero, so this work lays does not attempt to learn a set

of thresholds for each unit. More experiments are needed to determine whether this

non-linear optimization will prove more effective than the results given here.

An additional step that might offer improvement is learning a bounding box re-

gression algorithm that takes as input the bounding box from the estimator and

regressing to a bounding box that is potentially more correct, like the approach taken

by Girshick et. al. [16].

33

3.2 Advantage over R-CNN

There are a number of downsides to using R-CNN, the existing method for object

detection using deep features [16], and EdVidParse improves on these disadvantages.

The effectiveness of R-CNN strongly depends on the image preprocessing step, there

are many parameters to tune, the method is very slow at train and test times, and

there no information about the internal image representation is used in prediction.

However, an advantage is that R-CNN can be very accurate. EdVidParse is invariant

to preprocessing, has few parameters, is fast to train and test, and uses internal

network representations for prediction.

The R-CNN pipeline involves generating object proposals for a given image (typi-

cally 1000 or more), preprocessing that image region, extracting fc7 features from the

network, and classifying the image region with an SVM for each object class. During

training, thousands of object proposals are generated, sent through a network, and

used to train the SVM with hard negative mining. In contract, EdVidParse takes

unit activations from a single forward-pass in the network and constructs a bounding

box from the unit activations.

In R-CNN, the choice of image preprocessing greatly affects the outcome of the

classification. If a proposed image crop is highly non-square, simply warping the crop

will produce an image that is also hard for humans to identify. In the example of

detecting people and content in educational videos, this is especially a problem, as

shown in Figure 3-8. The fc7 features extracted from these image patches will be

different enough that a classifier trained on these images will not be invariant to all

kinds of preprocessing. EdVidParse on the other hand, because it depends on internal

network representations, is invariant to image pre-processing.

Additionally, in R-CNN training there are many parameters to tune - each set of

SVM parameters in addition to the object proposal algorithm parameters (of which

there can be 10s of parameters), the hard negative mining parameters, and oth-

ers. Training R-CNN end-to-end with Bayesian optimization is not an option, since

training the entire system takes too long and Bayesian optimization shows limited

34

(a) The original image and
bounding box

(b) Extracted and warped (c) Extracted and filled

Figure 3-8: An example of an image region that, when sent through the R-CNN with simple
warping, will not yield good results. In this case, cropping and filling will yield similar
results because the bounding box is highly rectangular.

improvement over grid search for large sets of parameters. In our comparison ex-

periments between our proposed algorithm and R-CNNs we train each piece of the

R-CNN pipeline separately, like the original authors. By contrast, EdVidParse has a

small number of parameters that can be trained end-to-end.

Finding object detections in a single video frame for R-CNN is very slow. With

1000 or more object proposals to generate for each frame, each one has to be resized

and interpolated for network processing, passed through the network, then ranked and

sorted to perform non-maximal suppression. This results in around 1000 forward-

passes through the network, one for each object proposal. In EdVidParse, only a

single forward-pass is needed, decreasing the processing time by a factor of 100 or

more.

R-CNNs do not take advantage of any of the internal network representations of

the images in the network. It only relies on fc7 features, which do not have any physi-

cal meaning for the image, discarding any unit activations from lower in the network.

In contrast, EdVidParse takes advantage of the internal network representations and

does not discard information.

However, a distinct advantage of R-CNNs is the ability to train the final SVM

with hard negative mining, with as many examples as needed to get the desired

performance. With the almost exhaustive list of object proposals, the AP score

achieved with R-CNNs can be as high as 0.90 depending on the training set. When

high accuracy is desired and speed is not an issue, R-CNNs prove a valuable tool for

35

object detection. Because one of the design goals of EdVidParse was speed, using

internal feature representations was much faster than using R-CNN.

3.2.1 Using object proposals for bounding box estimation

EdVidParse generates bounding boxes around objects, but does not benefit from using

an object proposal algorithm before bounding box estimation. The edge boxes object

proposal algorithm used in R-CNNs is extremely fast and highly tunable [50]. For a

given set of training images annotated with object bounding boxes, the parameters

are tunable to achieve high recall for that object class.

The object proposal algorithm used in comparisons of R-CNN and EdVidParse

is the edge boxes algorithm described by Zitnick, et. al. [7, 8, 50]. The basic idea

of the edge box algorithm is that objects in an image have certain edge properties.

For example, an object generally has a large cluster of complete edges inside a square

region. According to some tunable parameters, such as how far apart to sample boxes

across the image, the edge boxes algorithm can be tuned for images of particular sizes

or images that have particular objects. An example of using object proposals with

EdVidParse is described in Section 4.3 about reconfiguring picture-in-picture images.

To combine object proposals and bounding box estimation, generate a set of object

proposals and assign each box a score according to the formula given in Equation

3.1. This can solve the problem of how to generate bounding boxes from the unit

activations as described in Section 3.1.3. However, the downside to this approach is

that the bounding boxes that get generated in the final image are then limited to the

bounding boxes proposed by the edge boxes method. Zitnick et. al. claim that on the

PASCAL dataset, 96 percent recall is achieved with an acceptable overlap tolerance

of 0.5, and 75 percent with the stricter overlap tolerance of 0.7 [50]. This means that

the success of the overall bounding box estimator is dependent on the object proposal

estimator, since the recall is not 100 percent.

In our experiments, we achieved worse recall rates for classes that did not originally

appear in the PASCAL training set, namely for text content. Using object proposals

and assigning scores to them using the bounding box estimator method yielded worse

36

results across all classes compared to not using them, and this is probably because

the success of the final estimation is limited by the object proposals and therefore by

that algorithm. However, Section 4.3 gives an example of a use case where, because

of strong priors on the kinds of boxes we want to generate, using edge boxes can

guarantee increased performance.

37

Chapter 4

Applications

This section will describe three case studies for using EdVidParse to do three tasks

related to educational videos: (1) classifying videos by production style, (2) generating

bounding box predictions for people and content, and (3) reconfiguring a picture-in-

picture video.

4.1 Classifying video production style

4.1.1 Problem

Videos in online courses come in many different styles, and EdVidParse can answer

questions related to video style. For example, some videos are filmed in a production

studio with an instructor lecturing at a podium, and others are classroom lecture

recordings cut into pieces and posted online. Sometimes an instructor’s face features

prominently, other times the video is a presentation with a voiceover. Some videos

even vary style mid-video, for example from classroom recording to a close-up of

a slide. Researchers are interested in questions like whether high production value

videos or the presence of a lecturer in a frame increased student engagement.

In the study by Guo et. al. [18], the question is the correlation between video

production style and student engagement. For this study, researchers used a number

of videos from four computer science courses on edX, and gave each video a single

38

production label. The conclusions from the study were that high production cost

videos do not increase student engagement. However, EdVidParse can offer greater

insight into this question, since it can classify videos into categories on a more granular

level, giving a label to each frame.

EdVidParse classifies each frame in an educational video into one or none of 9

labels described in Table 4.1 using an SVM classifier on top of fc7 features with a test

set accuracy of 86 percent. To accomplish this task, a hand-labeled dataset was used

for training and testing.

4.1.2 An educational video dataset

Data collection

A set of educational videos was collected and annotated for training and testing.

Educational videos are available free of charge from edX for registered course users.

To take advantage of this, an automated script using Selenium [3] auto-registered for

all of the courses offered on edX in September 2014 and scraped the pages for all links

to videos hosted on YouTube. A total of 6914 video URLs were collected from 181

courses from varied disciplines.

0 10 20 30 40 50 60

Length (mins)

0

200

400

600

800

1000

1200

1400

F
re

qu
en

cy

Histogram of video lengths

Figure 4-1: Histogram of video lengths from the scraped edX videos

Because all the edX videos are hosted on YouTube, basic information about the

videos, such as length and frame rate, can be accessed via the YouTube API. Figure

39

4-1 shows the distribution of video lengths of the videos scraped from edX, where the

average video length was 9.11 minutes, consistent with the findings from Guo’s study.

Nearly all videos had a frame rate of 30 frames per second (fps), so they were very

high quality.

To create a dataset, 1600 frames were randomly selected. First, 800 URLs were

randomly selected from the scraped list. Then, from each video, two random times

were selected. Each frame was labeled with both a scene label and with object

annotations. Any frame that was all black or that was a fading transition between

two types of frames was rejected from the dataset. In total, 1401 images were split

into a training set and testing set. The test set has 20 images from each class label,

and the rest of the images make up the training set.

Scene annotations

Scene annotations are assigned labels from a semantic understanding of the world.

Humans are able to identify a dining room, despite there not being a standard dining

room template. While there are visual similarities between scene types, there are

even more differences. This idea can be applied to frames from educational videos,

giving each extracted frame a single label describing the type of scene in the frame.

The scene labels used for this dataset were a modified list taken from Guo’s study.

A full list of scene labels together with a description is shown in Table 4.1. The office

label assigned by Guo was renamed head to make it more general. To accommodate

various styles of videos and single them out specifically, more categories were added,

such as picture-in-picture (abbreviated to pip), synthetic, and discussion, that were

not specifically mentioned by Guo because those types of videos were not common

in computer science courses that were the focus of the study. Examples of each kind

of scene label are shown in 4-2, and a frequency histogram for each label is shown

in Figure 4-3. Because of the imbalance in class frequencies, the test set contains

20 examples of each class label, so test set accuracy and the confusion matrix are

reported for accuracy. When some categories had limited data, videos were found

manually for more examples to ensure at least 50 examples per class.

40

Scene labels Description
code A software demo or full-screen code-writing in an IDE

discussion Multiple people in a frame talking
Khan-style Free drawing on a tablet or paper, in the style of videos

popularized by Khan Academy
talking head Mostly contains the instructor

lecture From a live classroom recording
picture-in-picture Slide with a square overlay of an instructor in a corner

slide PowerPoint-like slide presentation, just with educational
content, sometimes containing just images

studio Staged recording of an instructor in a studio with no audience
synthetic An instructor and an overlay of slide content, but not in

rigid format like picture-in-picture

Table 4.1: Scene label categorization description

(a) code (b) discussion (c) Khan-style

(d) talking head (e) lecture (f) picture-in-picture

(g) slide (h) studio (i) synthetic

Figure 4-2: Example frames for scene labels

Labels were chosen in an attempt to minimize ambiguity using their original se-

mantic definitions. For example, a frame that contained a full-frame picture of a

famous person was classified as slide rather than head since it represented slide con-

tent presented to a leader, and slides that a person drew on to progressively explain

41

code
discussion head

khan-style
lecture pip slide

studio
synthetic

Scene label

0

100

200

300

400

F
re

qu
en

cy

62

145

430

55

125

62

401

52

104

Histogram of scene labels

Figure 4-3: Frequency histograms for scene labels in the educational video dataset

concepts was labeled as Khan-style.

4.1.3 Results

The overall test set accuracy is 86 percent classification accuracy. Each class SVM

is trained separately, then used together for test classification. Table 4.2 gives the

confusion matrix for the classifier, showing that the classifier more likely doesn’t

classify an object into a category rather than confusing two categories.

Each class is trained with a separate linear kernel SVM. The best model for

each class was chosen based on which combination of fc7 features (AlexNet, Hybrid-

placesCNN, PlacesCNN) and SVM parameters (L1 / L2 regularization, C value, bias)

had the highest 10-fold cross-validation accuracy on the combined training and valida-

tion sets. All images were warped for classification, because this is how the networks

were trained. Gaussian kernel SVMs are not used in training to avoid overfitting. A

Gaussian kernel exploits nonlinear relationships between the data points and can find

separating planes between the data when there are none, so to avoid overfitting on

the limited training data, Gaussian kernels were not used.

At test time, an image from the test set is classified with all 9 SVMs and assigned

42

Predicted label

co
de

di
sc

us
sio

n
he

ad

kh
an

-s
ty
le

lec
tu

re

pi
p

sli
de

st
ud

io

sy
nt

he
tic

ot
he

r

code 0.75 0.25
discussion 0.95 0.05
head 0.95 0.05
khan-style 0.75 0.25

True lecture 0.85 0.15
label pip 0.75 0.25

slide 0.95 0.05
studio 0.85 0.15
synthetic 0.95 0.05

Table 4.2: Confusion matrix for video production style classification

one class label based on which decision value is greatest. For example, an image can

get an SVM score of 0.95 from label 1 and 1.35 from label 2, so even though the

image was given a positive score by two models, it will be assigned label 2 because

the decision value is greater. An image with no positive classifications is not given a

label, so it is classified as other.

4.1.4 Discussion

The overall test set accuracy is 86 percent on the held-out test set, and the confu-

sion matrix is given in Table 4.2. EdVidParse is more likely to not classify a label

at all than confuse that label with another class. The classes that are hardest for

EdVidParse to classify are the code, Khan-style, and picture-in-picture classes, which

do not get classified correctly 25 percent of the time. Overall the classifier performs

well when presented with many different kinds of images, especially on the discussion

and head labels, since they are very distinct visual categories.

Despite the visual similarity between code and slide frames, the classifier can dis-

tinguish between the two types well, more likely not assigning a label at all rather

than incorrectly classifying the frame. There are no classes that are commonly con-

fused by the classifier, and the most common failure more in general is that a given

frame is not classified into any category rather than being incorrectly classified.

43

A limitation of this multiclass SVM approach is that the class labels were unbal-

anced for training. While the test set was kept constant at 20 examples per class,

some classes had more training examples. This meant that for a class like head that

had many training examples, the classifier makes few mistakes. However, for a label

like Khan-style, there are few examples, so more frames are not correctly classified as

Khan-style.

Another limitation with this classification scheme (as compared with the study

from Guo, et. al.) is that it classifies individual video frames, whereas some of

the video production styles may be easier to distinguish when a few adjacent video

frames are taken together. For example, the difference between a Khan-style frame

and a slide is more noticeable when notes are seen written on the screen in adjacent

frames. However, this approach is future work that is not covered by the scope of this

project. The classification accuracy can be improved by using hard negative mining

with image crops from the frames that do not have a particular image label.

Different network features performed best depending on the type of semantic

label. AlexNet features perform the best to identify slides, perhaps because they

are visually similar to signs, which is an object label used in the original AlexNet

training set. Places features perform better for labels that rely on seeing the entire

image to classify the scene, such as picture-in-picture and lecture, because those are

more easily decomposed into constituent scene parts. The HybridplacesCNN network

was trained with both object data and scene data, so frame types like code perform

best with Hybridplaces features, since there is both object elements like text and

scene elements like the frame around an computer window.

The end-result classifications for video frames are extremely fast to calculate - a

forward-pass through the network for each frame on a CPU is under 1 second, and

the SVM classification is a single matrix multiplication.

Using these scene annotations, the PlacesCNN network was used as a baseline for

finetuning a network to directly classify frames into one of the 10 proposed classes.

The hand-labeled set was used as a test set, and another random 10000 images were

classified using the trained SVM classifiers reported above. This is an approach of

44

semi-supervised learning, where many frames are classified with weak supervision

(using the roughly-calculated SVM classifiers trained on supervised data) are used

for training, and the supervised smaller dataset is used for testing. According to the

fine-tuning procedure recommended by the creators of Caffe, the learning rate was

increased in the fully-connected layers and the overall learning rate was decreased

from the PlacesCNN learning rate. In the end, because the amount of data used for

fine-tuning was small, the network achieved 90 percent accuracy on the test set, most

likely due to overfitting. However, in subsequent tests for bounding box estimation,

the fine-tuned network did not perform better than PlacesCNN or HybridplacesCNN,

perhaps because the changes in the convolutional layers did not happen appreciably

from the fine-tuning.

4.2 Extracting people and content for VideoDoc

4.2.1 Problem

Figure 4-4: Screenshot of the VideoDoc interface, which combines textual and video infor-
mation into one interface

A second application of EdVidParse is estimating bounding boxes for people and

textual content in video frames. In an attempt to explore the way students can

interact with static videos, a project called VideoDoc combines video information

with transcripts to subdivide the video into digestable sections, including separating

45

a talking head from progressing slides of notes [28]. Figure 4-4 shows a screenshot of

the VideoDoc interface. The main idea is to break up a video into smaller sections,

dictated by either a change in video viewpoint (such as a transition between a talking

head and a slide) or by a slide change.

EdVidParse provides a first-pass input to the VideoDoc system, taking a video

and outputting bounding box estimates in each frame of people and textual content,

the two salient objects used by VideoDoc. The person and content extractor uses all

the internal network features from the feature extraction stage and the bounding box

estimator described in Section 3.1.3. EdVidParse cannot distinguish between slides,

but can provide an estimate for viewpoint transitions within the video. A VideoDoc

creator can then clean up the annotations manually for the ones that were incorrectly

identified.

VideoDoc poses a number of object detection challenges for EdVidParse: How can

pictures of famous people in slides be marked as content rather than people? Can

internal network features discriminate between numbers of people in a frame?

4.2.2 Object annotation dataset

Each frame from the scene dataset described in Section 4.1.2 was annotated with

bounding box locations of all the people and the content in the frame. Content is

defined as textual content meant for a student to take notes on, such as graphs,

formulas, text, diagrams, code, etc. When the entire frame contains a slide, a tight

bounding box is drawn around the content rather than marking the entire frame. As

much of a person or his body that is in the frame is labeled as a person. Because

people and content are broad semantic categories, there are a wide range of objects

that fit the labels. There is little value in identifying a full-body person versus a

person’s face, since the size of the bounding box can provide this label instead. In the

dataset there were a total of 833 content bounding boxes and 1462 people bounding

boxes. Examples of annotated content and people frames are given in Figure 4-5.

46

Figure 4-5: Example people and content annotations

Scene label Best result Description
(AP score)

content 0.434 Places features, 3 units
people 0.439 Places features, 2 units
overall

0.437(mean AP score)

Table 4.3: Object detection results

4.2.3 Results

After training, the best results for detecting people and content are described in Table

4.3, with the mean AP score for both categories at 0.437. Training was done on the

training set, model selection performed on the validation set, and the results reported

on the test set.

An example of correctly-detected people and content is shown in Figure 4-6. A

correct detection means that the estimated bounding box overlaps the ground truth

bounding box by 50 percent or more.

4.2.4 Discussion

The best AP score for content is 0.434 and for people the best score is 0.439, which

performs well in most cases. However, there are some interesting failures.

EdVidParse cannot distinguish between people in a frame if they are too close

together. If the people are farther apart, it is likely that one of the thresholding

47

(a) A person is correctly localized. (b) Two content regions are correctly identi-
fied.

Figure 4-6: Two examples of correct person and content identifications. The green boxes
are extracted boxes with a high enough score.

(a) The people are far enough apart that the
system can distinguish them.

(b) The people are too close together to gen-
erate two separate boxes.

Figure 4-7: Depending on how far apart two people are, EdVidParse can generate the
appropriate number of bounding boxes. Red boxes are detected boxes, and green boxes are
those boxes with a high enough score to be accepted.

operations will capture two boxes, but if the people are too close together then this

is not possible (see Figure 4-7). An improvement in future work is being able to

distinguish between people in a frame independent of how close together they are.

Another interesting scenario is pictures or cartoons of people that appear in slides.

If the photos are very life-like, the system generates bounding boxes for this person.

Additionally, because the specifications for the person detector are for both faces and

full bodies, when there is a lot of clutter in the frame with body parts and faces, a

single large bounding box is returned. See Figures 4-8 and 4-9 for examples.

The most common feature in content areas is the presence of text, so when there

are dense regions of text, the estimator correctly predicts the content regions, as

48

(a) Most of the frame is taken up by body
parts. Some are identified, some are not.

(b) These famous people look like real people,
and they are too close together.

Figure 4-8: Interesting mishaps in the people estimator. Red boxes are detected boxes, and
green boxes are detected boxes with a high enough score.

(a) The system found the real person, but
also the picture of the person in the top
right.

(b) A better score is assigned to the correct
(inner) box.

Figure 4-9: Examples of successful and unsuccessful people detections by the classification
system. Red boxes are detected boxes, and green boxes are the detected boxes with high
score.

shown in Figure 4-10. However, for areas of long, thin text, as shown in Figure

4-11(a), the estimator does poorly. This is most likely because the activation for

that area is not strong enough to withstand the thresholding stage. Also, logos often

have content-like elements such as text and diagrams, so it is hard for EdVidParse to

distinguish between logos and desired content, as shown in Figure 4-11(b). In fact,

a failure mode for text content detection in evaluation is that, as shown in Figure

4-11(b), an area of large text might be detected as a number of different text regions,

but the ground truth result might be labeled as a single box.

A number of techniques for finding the optimal filters were explored, and the

kinds of units that are most useful for detecting people are different than the units

49

(a) One bounding box around the blackboard
text.

(b) Two bounding boxes around independent
regions of content.

Figure 4-10: The bounding box estimator got content exactly right, even when there were
two boxes to find. Red boxes are detected boxes, and green boxes are detected boxes with
a high enough score.

useful for detecting content, because they are composed of different kinds of object

parts. units that are found to be predictive of people are units in pool2 and pool5 in

the Places network, which suggests that people are semantic components of scenes.

With content, the units come from lower down in the network, from conv4 and pool2,

suggesting they are building blocks with less semantic meaning. Because people come

in different configurations, we hope that the units found to activate strongly to people

activate for different parts of a body - for example to a face, a leg, or a body. In

practice this does not happen, perhaps because the data is not labeled with these kinds

of annotations. Appendix A contains some visualizations of strongest-activating units

for people and for content.

(a) Box-like text is easy to find, but long thin
text is hard to find.

(b) Logos have content-like elements, so they
are also detected.

Figure 4-11: Red boxes are detected boxes, and green boxes are detected boxes with a high
enough score.

50

4.3 Reconfiguring picture-in-picture videos

4.3.1 Problem

Educational videos are often post-processed after filming to be in the picture-in-

picture style, shown in Figure 4-2. It has been shown that the presence of an instruc-

tor’s head in the side of a frame with only text will increase student engagement.

However, a student may want to view the two streams separately. For example, when

a learner is reviewing slides, a talking head is distracting. But, an instructor’s head

is engaging when viewing a video for the first time. So being able to extract an

instructor’s head from a picture-in-picture frame can be helpful for learners.

EdVidParse can remove the smaller picture of an instructor’s head from picture-in-

picture videos. An added benefit of using this feature of EdVidParse is that part of the

detection work is already done - the user will only want to send through a video that is

already in picture-in-picture format, removing the need for the difficult classification

step. The task is then a detection task rather than simultaneous classification and

detection.

4.3.2 Results

Usually when a video is composed into picture-in-picture format, the inner picture

is an instructor’s head or body from a studio or live lecture recording. By definition

the inner picture is always rectangular (if it is not rectangular then the frame is a

synthetic frame and is not considered picture-in-picture). Because of this strong prior,

we combine object proposals and the bounding box estimation method to provide a

fast way of locating near-exact bounding boxes for the inner picture to remove.

Edge boxes rely heavily on the observation that specific objects have certain edge

properties. In the case of picture-in-picture frames, there is a distinctive edge map

because of the strong edge around the inner picture bounding box. We use these

assumptions to train the edge box algorithm parameters to find the inner picture in

only picture-in-picture frames, achieving 98 percent recall with a 0.7 overlap threshold

51

tolerance.

But because Zitnick’s object proposal algorithm [50] returns many boxes, only

one of which is correct, we can use the bounding box estimator for people to assign

each object proposal a score, as described in Section 3.2.1 and Equation 3.2. The box

with the highest score is the box containing the person, which is the box we want to

remove. The highest-scoring box was the correct box 100 percent of the time in our

tests.

Once this box is located, we can replace all the pixels in that box with an inter-

polated color, the one that appears most frequently in the two pixels surrounding the

outside of the proposed box borders. Two examples of correctly-interpolated frames

are shown in Figure 4-12.

(a) Original frame (b) Automatically interpolated

(c) Original frame (d) Automatically interpolated

Figure 4-12: Two examples of picture-in-picture interpolation

However, in the failure case where the object proposal algorithm does not return

the desired box, the system will automatically interpolate the wrong color, as shown

in Figure 4-13. We rely on the fact that the videos are sampled every 5 frames and

that the inner picture is fixed to take the majority-returned bounding box over many

52

frames and take the bounding box returned by a local majority as the true bounding

box for all frames.

Figure 4-13: A potential interpolation failure caught by the local majority function at the
end.

EdVidParse can be used to remove the inner picture from picture-in-picture video

formats. In future work, the same principles can be extended to do lecturer sub-

traction and background blackboard interpolation, when combined with motion tech-

niques for interpolating video frames [51].

53

Chapter 5

Discussion and Conclusion

5.1 Comparison of EdVidParse and R-CNN

We compare EdVidParse to the standard R-CNN system for object detection with

two metrics in mind: accuracy and speed. R-CNN wins in accuracy, and EdVidParse

wins in speed. In our baseline R-CNN system, we did not use bounding box regres-

sion like the original paper, and we used edge boxes [50] instead of selective search

[41] for object proposal generation. The source code is for selective search closed-

source, and it loses to edge boxes in both time and recall performance [19]. We did

not use bounding box regression after classification because it offered no significant

performance improvements for the two object classes tested.

While R-CNNs are on average more accurate, the EdVidParse method offers a

significant performance speedup. For training, R-CNN takes 4 hours per class, while

EdVidParse takes approximately 10 minutes per class. This offered more opportunity

for training iterations in EdVidParse, perhaps contributing to improved results. For

testing, EdVidParse offers a 100-fold speed improvement over R-CNN because Ed-

VidParse requires only one forward-pass through the network while R-CNN requires

nearly 1000. The AP score results are similar for R-CNN and EdVidParse, with R-

CNN outperforming EdVidParse by a few percentage points. However, in practice,

the speed of EdVidParse makes it more feasible to use over R-CNN. Tables 5.1 and

5.2 summarize the results.

54

Person Content
R-CNN 0.62 0.42

EdVidParse 0.439 0.434

Table 5.1: Best AP scores

Train Test
R-CNN 4 hours per class 30 seconds per frame

EdVidParse 10 minutes per class ≤ 1 second per frame

Table 5.2: Average speed

5.2 Conclusion

EdVidParse provides a fast and easy way to extract people and content from educa-

tional videos, in addition to classifying the video production style in a given video

frame. The techniques of using internal features to estimate bounding boxes work for

small, specific datasets, even without cumbersome network fine-tuning. AP scores of

more than 0.43 have been achieved for people and content, with manual tuning for a

specific video yielding better results when necessary.

The three main design goals of speed, accuracy, and trainability are met, since

EdVidParse improves almost 100-fold the speed at which R-CNN could accomplish

the same task. However, while EdVidParse is accurate at acceptable levels, it is

nowhere near perfect, and when used in practice should be combined with a manual

sanity check. In practice, the ability to process lots of data with an initial first-pass

with an automatic tool quickly is more useful than a slow tool that is more accurate.

Because the proposed technique for bounding box estimation is a general technique

that can be applied with limited training data, EdVidParse is flexible and easily

re-trainable.

EdVidParse can now be used to correlate student interaction data with video

events, as an input to a video viewing system that specially presents textual slide in-

formation to students, and in removing picture-in-picture video formats to just slides.

Improvements to the model training procedure, including non-linear optimizations us-

ing simultaneous weighting and thresholding constraints, is also future work.

Educational videos are an increasing presence on the Internet, and EdVidParse can

55

provide insights about the kinds of videos students are watching. Three case studies,

classifying video production style, extracting people and textual content boxes, and

removing the picture from picture-in-picture, have shown that EdVidParse is a useful

tool in educational video analysis.

56

Appendix A

Figures

Figure A-1: Visualization of pool2, unit 39 activations. Used in person estimation.

57

Figure A-2: Visualization of pool5, unit 3 activations. Used in person estimation.

Figure A-3: Visualization of pool5, unit 199 activations. Used in person estimation.

58

Figure A-4: Visualization of pool2, unit 134 activations. Used in content estimation.

Figure A-5: Visualization of pool5, unit 251 activations. Used in content estimation.

59

Figure A-6: Visualization of conv4, unit 174 activations. Used in content estimation.

60

Bibliography

[1] John Adcock, Matthew Cooper, Laurent Denoue, Hamed Pirsiavash, and
Lawrence A. Rowe. TalkMiner: a search engine for online lecture video. In Pro-
ceedings of the international conference on Multimedia, pages 1507–1508. ACM,
2010.

[2] Pulkit Agrawal, Ross Girshick, and Jitendra Malik. Analyzing the performance of
multilayer neural networks for object recognition. In IEEE European Conference
for Computer Vision (ECCV), pages 329–344. Springer, 2014.

[3] David Burns. Selenium, 2011.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27, 2011.

[5] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 886–893. IEEE, 2005.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 248–255. IEEE, 2009.

[7] Piotr Dollar and C. Lawrence Zitnick. Fast Edge Detection Using Structured
Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 2015.

[8] Piotr Dollár and C. Lawrence Zitnick. Structured forests for fast edge detection.
In Computer Vision (ICCV), 2013 IEEE International Conference on, pages
1841–1848. IEEE, 2013.

[9] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. In Proceedings of the 31st International Conference
on Machine Learning (ICML), pages 647–655, 2014.

[10] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov.
Scalable object detection using deep neural networks. In Computer Vision

61

and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 2155–2162.
IEEE, 2014.

[11] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. The Pascal Visual Object Classes (VOC) Challenge. Inter-
national Journal of Computer Vision, 88(2):303–338, June 2010.

[12] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. LIBLINEAR: A library for large linear classification. The Journal of Ma-
chine Learning Research, 9:1871–1874, 2008.

[13] P F Felzenszwalb, R B Girshick, D McAllester, and D Ramanan. Object Detec-
tion with Discriminatively Trained Part-Based Models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(9):1627–1645, September 2010.

[14] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[15] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian optimization
with unknown constraints. In Uncertainty in Artificial Intelligence, 2014.

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[17] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial Intelli-
gence and Statistics, pages 249–256, 2010.

[18] Philip J. Guo, Juho Kim, and Rob Rubin. How video production affects student
engagement: an empirical study of MOOC videos. In Proceedings of the first
ACM conference on Learning @ Scale, pages 41–50. ACM Press, 2014.

[19] Jan Hosang, Rodrigo Benenson, Piotr Dollár, and Bernt Schiele. What makes
for effective detection proposals? arXiv preprint arXiv:1502.05082, 2015.

[20] Sara T. Itani. EduCase: an automated lecture video recording, post-processing,
and viewing system that utilizes multimodal inputs to provide a dynamic student
experience. Masters of Engineering, Massachusetts Institute of Technology, 2013.

[21] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014.

[22] Esha Baidya (Kayal). LectureKhoj: Automatic tagging and semantic segmen-
tation of online lecture videos. 2014 Seventh International Conference on Con-
temporary Computing (IC3), pages 37–43, August 2014.

62

[23] Juho Kim, Philip J. Guo, Daniel T. Seaton, Piotr Mitros, Krzysztof Z. Gajos,
and Robert C. Miller. Understanding In-Video Dropouts and Interaction Peaks
in Online Lecture Videos. In Proceedings of the first ACM conference on Learning
@ Scale, pages 31–40, 2014.

[24] Kazuaki Kishida. Property of Average Precision and its Generalization: An
Examination of Evaluation Indicator for Information Retrieval Experiments.
NII Technical Report NII-2005-014E, National Institute of Informatics, Tokyo,
Japan, October 2005.

[25] René F. Kizilcec, Kathryn Papadopoulos, and Lalida Sritanyaratana. Showing
face in video instruction: effects on information retention, visual attention, and
affect. In Proceedings of the 32nd annual ACM conference on Human factors in
computing systems, pages 2095–2102. ACM Press, 2014.

[26] Alexander Klaser, Marcin Marszalek, and Cordelia Schmid. A spatio-temporal
descriptor based on 3d-gradients. In BMVC 2008-19th British Machine Vision
Conference, pages 275–1. British Machine Vision Association, 2008.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[28] Rebecca Krosnick. VideoDoc: Combining Videos and Lecture Notes for a Better
Learning Experience. Masters of Engineering, MIT, 2015.

[29] Yann LeCun, B. Boser, J. S. Denker, D. Henderson, and L. D. Jackel. Back-
propagation Applied to Handwritten Zip Code Recognition Y. LeCun. Neural
Computation, 1(4):541–551, 1989.

[30] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[31] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International journal of computer vision,
42(3):145–175, 2001.

[32] Amy Pavel, Colorado Reed, Björn Hartmann, and Maneesh Agrawala. Video
digests: a browsable, skimmable format for informational lecture videos. In
Proceedings of the 27th annual ACM symposium on User interface software and
technology, pages 573–582. ACM Press, 2014.

[33] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning inter-
nal representations by error propagation. In David E. Rumelhart and James L.
McClelland, editors, Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume I, pages 318–362. Bradford Books, Cambridge,
Mass., 1986.

63

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and
others. ImageNet Large Scale Visual Recognition Challenge (ILSVRC). arXiv
preprint arXiv:1409.0575, 2014.

[35] Kshitij Sharma, Patrick Jermann, and Pierre Dillenbourg. How Students Learn
using MOOCs: An Eye-tracking Insight. In EMOOCs 2014, the Second MOOC
European Stakeholders Summit, 2014.

[36] Jasper Snoek. Bayesian Optimization and Semiparametric Models with Applica-
tions to Assistive Technology. PhD thesis, University of Toronto, 2013.

[37] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian opti-
mization of machine learning algorithms. In Advances in Neural Information
Processing Systems, pages 2951–2959, 2012.

[38] Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan P. Adams. Input
warping for Bayesian optimization of non-stationary functions. In International
Conference on Machine Learning, 2014.

[39] Kah-Kay Sung and Tomaso Poggio. Example-based learning for view-based hu-
man face detection. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 20(1):39–51, 1998.

[40] Kevin Swersky, Jasper Snoek, and Ryan P. Adams. Multi-task bayesian optimiza-
tion. In Advances in Neural Information Processing Systems, pages 2004–2012,
2013.

[41] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders.
Selective Search for Object Recognition. International Journal of Computer
Vision, 104(2):154–171, September 2013.

[42] Yuanyuan Wang, Yukiko Kawai, and Kazutoshi Sumiya. An Exploratory Search
for Presentation Contents based on Slide Semantic Structure. In Proc. of the 26th
International Conference on Software Engineering and Knowledge Engineering
(SEKE 2014), pages 665–670, July 2014.

[43] Sarah Weir, Juho Kim, Krzysztof Z. Gajos, and Robert C. Miller. Learnersourc-
ing Subgoal Labels for How-to Videos. pages 405–416. ACM Press, 2015.

[44] Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude
Oliva. SUN Database: Exploring a Large Collection of Scene Categories. Inter-
national Journal of Computer Vision, August 2014.

[45] Haojin Yang, Maria Siebert, Patrick Luhne, Harald Sack, and Christoph Meinel.
Lecture Video Indexing and Analysis Using Video OCR Technology. In Signal-
Image Technology and Internet-Based Systems (SITIS), 2011 Seventh Interna-
tional Conference on, pages 54–61. IEEE, November 2011.

64

[46] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in Neural Information Processing
Systems, pages 3320–3328, 2014.

[47] Hong Qing Yu, C. Pedrinaci, S. Dietze, and J. Domingue. Using Linked Data
to Annotate and Search Educational Video Resources for Supporting Distance
Learning. IEEE Transactions on Learning Technologies, 5(2):130–142, April
2012.

[48] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Object Detectors Emerge in Deep Scene CNNs. In 3rd International Conference
on Learning Representations (ICLR), 2015.

[49] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.
Learning Deep Features for Scene Recognition using Places Database. In Ad-
vances in Neural Information Processing Systems (NIPS), 2014.

[50] C. Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals
from edges. In IEEE European Conference for Computer Vision (ECCV), pages
391–405, 2014.

[51] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and
Richard Szeliski. High-quality video view interpolation using a layered represen-
tation. In ACM Transactions on Graphics (TOG), volume 23, pages 600–608.
ACM, 2004.

65

	Introduction
	Related work
	Educational videos
	Object detection and scene recognition
	Convolutional neural networks (CNNs)
	AlexNet
	Improvements on AlexNet

	Evaluation metrics

	EdVidParse
	System overview
	Design goals
	CNN feature extractor
	Feature processor
	Training and evaluating the bounding box estimator
	Potential improvements

	Advantage over R-CNN
	Using object proposals for bounding box estimation

	Applications
	Classifying video production style
	Problem
	An educational video dataset
	Results
	Discussion

	Extracting people and content for VideoDoc
	Problem
	Object annotation dataset
	Results
	Discussion

	Reconfiguring picture-in-picture videos
	Problem
	Results

	Discussion and Conclusion
	Comparison of EdVidParse and R-CNN
	Conclusion

	Figures

