
Search Tools for Scaling Expert Code Review
to the Global Classroom

by

Abigail Klein

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Abigail Klein

Department of Electrical Engineering and Computer Science
August 6, 2015

Certified by .

Robert C. Miller
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .

Professor Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee

2

3

Search Tools for Scaling Expert Code Review
to the Global Classroom

by

Abigail Klein

Submitted to the Department of Electrical Engineering and Computer Science on August 7, 2015
in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical

Engineering and Computer Science.

Abstract
This thesis aims to answer the question “How can teachers of online classrooms give more
qualitative feedback to students?” We narrow the scope of this question to an online software
engineering class in which a major component is code review. We built two search tools that
give teachers better coverage of student code. The first tool, Comment Search, allows students
and staff to reuse any comment they previously wrote when reviewing another student’s code.
Staff can reuse any comment written by any staff member as well. After deploying Comment
Search in a classroom for a full semester, we found that students and staff used this tool to write
higher quality comments. We also found that many reused comments were about similar
patterns in code. This inspired the second tool, Code Search, which allows teachers to search for
sections of student code that contain a desired pattern. Preliminary results of Code Search are
promising: for the queries that Code Search is built for, Code Search returns nearly all relevant
results. Together, Comment Search and Code Search offer teachers the ability to give
meaningful comments to many more students than otherwise possible.

Thesis Supervisor: Robert C. Miller
Title: Professor

4

5

Acknowledgements
First and foremost, I want to thank my advisor and mentor, Rob Miller. Rob put in an enormous
amount of time to help me when I needed it, coming in on the weekends to meet with me and
sitting one-on-one with me weekly if I wanted. He was accommodating of my unorthodox
schedule due to track practices and competitions. What’s more, he was patient and
understanding when I most needed a mentor outside of the workplace. Most amazing is how he
balances mentoring all of his graduate students with teaching two classes a term, being the
Educational Officer, and being the EC Housemaster. I am very grateful to have been able to to
learn from him.

Next, I want to thank Max, Elena, and Rob for their help with designing the Code Search pattern
language. Despite it being difficult to coordinate a meeting between 4 very busy people weekly,
it was really fun. And Max, sorry about the triple-character operators. We’ll go with emoji’s
next time.

Thanks to everyone in the UID group for their help during pair research (every week, we help
each other out with research blockers). And thanks for being a great group of people with a great
sense of humor!

Last but not least, I want to thank my friends and my family. To my friends, in particular the
pole vaulters, who are my family here at MIT, thank you for being some of the most caring,
funny, interesting, crazy, and altogether amazing people I had the good fortune to spend my time
at MIT with. And to my family, thank you for being unconditionally loving and supporting of
me.

6

7

Contents

1 Introduction .. 11

1.1 Motivation ... 11
1.2 Comment Search ... 12
1.3 Code Search .. 13
1.4 Contributions .. 14

2 Related Work ... 15
2.1 Existing Tools for Powergrading .. 15
2.2 Clustering Code .. 16
2.3 Code Search .. 16
2.4 Caesar .. 17

3 Comment Search .. 18
3.1 Motivation ... 18
3.2 User Interface .. 20
3.3 Implementation ... 24
3.4 Evaluation ... 25

3.4.1 Usability Evaluation ... 25
3.4.2 Effectiveness Evaluation .. 26
3.4.3 Applications for Code Search .. 29

4 Code Search .. 31
4.1 Pattern Language .. 31

4.1.1 Primitives ... 31
4.1.2 Operators .. 32
4.1.3 Return Type ... 35

4.2 Implementation ... 35
4.2.1 Query Parsing ... 35
4.2.2 Code Parsing .. 36
4.2.3 Evaluation .. 37
4.2.4 Scoring ... 39
4.2.5 Display ... 42

4.3 Evaluation ... 43
4.3.1 Qualitative Evaluation ... 43
4.3.2 Information Retrieval Accuracy .. 48
4.3.3 Performance ... 50
4.3.4 Limitations of Code Search ... 50

5 Discussion ... 52
5.1 Comment Search ... 52
5.2 Code Search .. 52

8

5.3 The Comment Search/Code Search System ... 53
6 Future Work and Conclusion ... 54

6.1 Future Work .. 54
6.1.1 Comment Search .. 54
6.1.2 Code Search ... 54

6.2 Conclusion .. 56
7 References ... 57

9

List of Figures

Figures
Figure 1. The Comment Search interface with 3 similar comments displayed 12
Figure 2. The Comment Search context bubble ... 13
Figure 3. Caesar’s code reviewing interface .. 17
Figure 4. Caesar’s comment interface ... 20
Figure 5. A newly-saved comment in Caesar .. 20
Figure 6. The Comment Search interface with three similar comments displayed 21
Figure 7. Comment Search context bubble .. 22
Figure 8. Comment Search text area after user selects a comment 22
Figure 9. Comment Search for a reply ... 23
Figure 10. Data processing pipeline of Fullproof scoring engine 25
Figure 11. Chart of comment reuses using Comment Search .. 27
Figure 12. Code Search pipeline .. 35
Figure 13. Context-free grammar for Code Search pattern language 36
Figure 14. Pseudocode for evaluation of Code Search .. 37
Figure 15. Code Search results .. 42

Tables
Table 1. Common mistakes found by code reviewers and sample queries

that describe the mistakes .. 14
Table 2. Similar comments written by Caesar code reviewers 19
Table 3. Type of apparatus used to interact with the system ... 25
Table 4. Example of similar comments and their correspondingly similar lines of code 29
Table 5. Pattern language operators ... 32
Table 6. Code Search results for repeated code .. 44
Table 7. Code Search results for while loops that should be for loops 45
Table 8. Code Search results for misunderstood method specifications 46
Table 9. Code Search results for a bug in angle calculation .. 47
Table 10. Precision values for 10 sample queries ... 48
Table 11. Coverage ratios of code review with Code Search compared to without 50

10

11

Chapter 1 Introduction

Online classrooms are becoming increasingly popular with the rise of edX, Coursera, and Khan
Academy. They have many benefits, namely: (1) they are free and available to the entire world,
(2) they can be catered toward individual students more easily, and (3) they can be delivered to
tens of thousands of students at once. One major limitation of MOOCs is that students and
faculty interact minimally, both because students are learning remotely and because there are too
many students for faculty to interact with all of them. This means that, at least currently, most
assignments are graded for correctness, rather than for style, clarity, and other aspects of quality
that are hard to measure automatically. In an English class, for example, this means that students
might answer multiple choice questions rather than writing essays. In a software engineering
course, this means that code is graded for correctness, rather than for style. Clearly, without
qualitative feedback, MOOCs do not offer the same value of education as a traditional
classroom. The vision of this thesis is to create tools to support staff of massive open online
classrooms (MOOCs) and large on-campus classrooms to give qualitative feedback to
computer science students.

1.1 Motivation
6.005 is an introductory course to software engineering for MIT undergraduate computer science
majors. One of the unique parts of 6.005 is its code-reviewing component. Students use a
platform called Caesar [1]. Students submit assignments to Caesar, and Caesar assigns chunks of
code to other students, staff members, and volunteers to review. After the reviewing period
ends, students can read comments on their code, revise their programs, and re-submit them.

The value of code review in 6.005 is three-fold. First, students receive comments on their own
code. Many 6.005 students lack experience writing large software engineering projects, so
receiving critiques on their coding style and technical abilities is invaluable. Second, students
are exposed to different coding styles as they review their peers’ code, which is critical to a
teaching them what both good and bad code looks like. Third, students gain experience
participating in code reviews. Code review is very common in industry, and it is critical that
students are prepared for this. Even though students gain a lot from reviewing other students’
code, they sometimes make mistakes in their comments. For this reason, Caesar also uses expert
reviewers: staff members and experienced volunteers to give quality assurance.

Because 6.005 has only 200 students per semester, expert reviewers can read a large fraction of
the students’ code. In a few years, 6.005 will be offered in a massive open online classroom
(MOOC) to approximately 20,000 students. When this happens, 6.005 will need tools that
increase expert coverage of student code.

12

Many comments in Caesar identify similar problems in code. This suggests that students make
similar mistakes in their assignments. We propose two tools that will allow staff members to
take advantage of this fact and use the same comment on similar programs: Comment Search and
Code Search. Importantly, these tools are meant not to replace expert participation but to
augment it. Using Comment Search and Code Search, experts will be able to reach more
students with the same high-quality feedback that they give when reviewing code with Caesar.

1.2 Comment Search
Comment Search is intended to help teachers and students alike write higher quality comments
about code. Rather than needing to write a unique comment for every line of code they wish to
critique, students and teachers can reuse previously written comments.

The figures below show the Comment Search interface. As a code reviewer writes a comment,
Comment Search suggests the most relevant previously written comments: those that contain the
most matching keywords (Figure 1). Comment Search offers contextual information about the
older comment, such as the author, author’s reputation, and the lines of code to which the
previous comment referred (Figure 2).

Figure 1. The Comment Search interface with 3 similar comments displayed.

13

Figure 2. The Comment Search context bubble. When code reviewers hover over a suggested comment, they can

see a context bubble containing the lines of code that the original comment referred to. The italicized text that
appears in the textbox shows where the suggested comment will appear in the textbox if the user selects it.

I implemented Comment Search for Caesar and we tested it for one semester of 6.005. Over the
four months, five problem sets, and 33,483 comments written by staff and students, 1% of
comments written that semester were reused using Comment Search. Code chunks are assigned
randomly for review and each reviewer only reviews ten chunks a session, so the fact that
authors found many repeated mistakes supports the need for this tool.

1.3 Code Search
The results of Comment Search confirmed that many students make similar mistakes in their
code. The next step was to create a tool where staff members could comment on all of the same
mistake at once. Code in software engineering classes is too long and complex to form
meaningful clusters, so automated code clustering techniques are not a viable option. Instead,
Code Search allows expert Java programmers to search for patterns in code. This keeps the
expert Java programmer involved in the process and takes advantage of their intelligence and
understanding of code.

Table 1 shows some mistakes code reviewers found in 6.005 student code this semester, and
queries that might locate other examples of these mistakes.

14

Mistakes found Sample Query

Find examples of Board classes
that assume that the size of the
file input is exactly 2.

public	
 Board	
 {{{	
 !!!(((.size()	
 !=	
 2)))	
 }}}

Find all code comments
containing the word TODO,
usually indicating that something
was not implemented.

///***TODO***///

Find examples of the
ConcretePage class in which the
student implemented the equals or
hashCode methods. ConcretePage
is mutable, so it is unnecessary to
define these two methods; they
should be inherited from Object.

ConcretePage	
 {{{	
 equals	
 |||	
 hashCode	
 }}}

Table 1. Common mistakes found by code reviewers and sample queries that describe the mistakes.

I evaluated the language on ten different queries. Code Search nearly perfectly retrieves relevant
code chunks for well-formed queries that are specific and syntax-related, but has poor
performance for ill-formed or imprecise queries. For well-formed queries, Code Search
increases staff coverage of student errors compared to what it was without Code Search.

1.4 Contributions
The main contributions of this work are as follows:

1. Comment Search, a tool that improves the quality of code review comments by allowing
reviewers to search through and reuse old comments that are relevant to new student
code.

2. Evidence from reused comments to support the theory that many software engineering
students make similar mistakes.

3. Code Search, a tool that allows code reviewers to increase their coverage of student code
by finding matches to a specific pattern in code.

15

Chapter 2 Related Work

2.1 Existing Tools for Powergrading
As classes move to the online platform, class sizes increase dramatically while the staff size
remains the same. Because the ratio between staff and students is far worse, it becomes
extremely time-consuming to grade student work. One solution is to grade student code for
correctness. In a software engineering class, whose goal is to teach programming style, grading
only for correctness is not sufficient. Powergrading is a new approach to address this problem
[2]. The idea behind powergrading is to group similar answers together and allow teachers to
assign grades to groups as a whole. In their paper, Basu et al. explore powergrading short
answers of social science questions. They found that this approach allows teachers to assign
grades significantly more quickly without sacrificing accuracy and impartiality [3]. Although
powergrading has been found to be effective for humanities classes, clustering and commenting
on code provides a significant new challenge. First, code is typically much longer than short
answer responses. In Caesar, students write hundreds of lines of code for each assignment,
compared to the one to five word answers that powergrading handles. Second, clustering code
that is stylistically and/or functionally similar is more complex than clustering natural language
[4].

A code reviewing tool based on Rietveld specifically evaluates code quality at scale [5]. The
tool is similar to Caesar in that students submit programming assignments and staff members
provide feedback on particular lines of code. Notably, this tool stores all comments made by
instructors and allows instructors to reuse comments. This allows instructors to provide
consistent messages to students as well as making the feedback process faster. The tool was
analyzed in a class size of 300 students, which is about 100 times smaller than a typical edX
class. While reusing comments will certainly improve code review efficiency, it is not enough
when scaling code review to a classroom with thousands of students.

Another tool that mass-grades computer programs is called the Automatic Coding Composition
Evaluator (ACCE) which also mass-grades computer programs [6]. ACCE analyzes code for
similarity and provides a visualization for clusters. This allows a user to see which cluster code
belongs. However, this tool is intended to automate the grading process completely. While the
intention is to allow graders to provide feedback to different clusters of submissions, the
emphasis is on the machine component rather than the human component. For example, the tool
automatically clusters code based on overall document distance which, in large coding
assignments, likely represents general design decisions. ACCE falls short in identifying
similarities in code on a smaller scale, such as method-wise or block-wise.

16

2.2 Clustering Code
Many computer programming assignments are open ended, which encourages a variety of
correct implementations. This is especially true in a software engineering class, in which
students have the freedom to design their implementations which may be hundreds of lines of
code long. Despite the wide variety of possibilities, student code submissions fall into a much
smaller set of unique approaches [7]. Researchers analyzed programs functionally and
syntactically and organized them into clusters. It was expected that the correct answer would be
the most popular. Crowdsourcing exploits this idea in using majority voting as one of its
decision-making techniques [8]. Interestingly, there were also clusters of incorrect
implementations. This suggests that students whose code falls in the same cluster would benefit
from the same feedback. These findings support the creation of an interface that groups similar
student responses to increase grading efficiency.

In order to organize code into clusters, it is important to recognize what it means for two
programs to be similar enough to be clustered. It is possible to transform literals and identifiers
to find identical code submissions. In fact, this is used to check for plagiarism [9]. However,
code that is similar in style but not necessarily identical can also be useful to cluster. One
algorithm identifies code clones at the block level using fingerprinting techniques at the
statement level [4]. This algorithm allows the user to specify classification of clusters depending
on the context. This will allow for graders to search for clusters containing a specific design
pattern, for instance.

2.3 Code Search
As an alternative to automatically clustering code, evaluators might want to search through code
for a specific error. In order to write a query that matches code rather than natural language,
expert reviewers will need to learn a pattern language. Several such languages exist already.
Some pattern languages match code lexically by extracting directly from source code, such as
regular expression and LSME [10]. These languages are typically easy to use and have good
performance, but are not good at identifying code syntax and structure at the character level.
Other pattern languages match code syntactically by parsing code. There are several variants of
this: JavaML [11] uses Extensive Markup Language (XML) tools to parse code, while LAPIS
[12], ASTLog [13], and TAWK [14] use abstract syntax trees. In general, these languages allow
for greater precision, but are harder to use and have worse performance. LAPIS seems to have
the best performance without sacrificing precision. However, it has not been updated since its
publication in 2002.

In order to write a new pattern language, it will be necessary to parse code into an abstract syntax
tree. ANTLR [15] is one tool that does this. ANTLR first lexes code into tokens. Then, it
parses code using a programming language grammar.

17

2.4 Caesar
Caesar is a code review tool used in MIT’s Introduction to Software Engineering course. Its
basic workflow is as follows:

1. Students submit their problem sets, which are then uploaded to Caesar.
2. Caesar divides problem sets into smaller chunks, generally a single file.
3. Caesar assigns each student and staff member 5-15 chunks to review.
4. Students and staff members review each chunk of code they are assigned. They can write

a comment on a line or multiple lines of code, reply to comments written by other
reviewers, and upvote or downvote comments.

5. At the end of the code reviewing period, students can read the feedback on their problem
set submissions.

Figure 3 shows the code review interface. The main frame shows the student’s code, with staff
code grayed out. The comment bar is on the left. To write a new comment, a user clicks on one
or more lines of code. In the figure, the user has clicked on line 3 to write a comment about it.
The thumbs up/down buttons are for upvoting/downvoting comments, and mousing over a
comment reveals a reply button for writing responses.

Figure 3. Caesar’s code reviewing interface.

18

Chapter 3 Comment Search

Comment Search is a tool that allows users of Caesar to search through previous comments they
have written and reuse them if they see fit. In this chapter, I describe Comment Search in detail;
specifically, its motivation, user interface, implementation, and evaluation.

3.1 Motivation
The motivation behind Comment Search is to make writing comments in Caesar easier.
Traditionally, students using Caesar compose a new comment for every line (or lines) of code
they question. Studies show that many students make similar mistakes, so it would follow that
many students write similar comments. I looked through comments written by students during
one semester of 6.005. For comments that I suspected would be repeated by other code
reviewers, I wrote a regular expression query, such as magic	
 number or t?mp, to find similar
comments. Some examples of the results are listed in Table 2.

19

Comment
Description

Number of
related
comments

Sample comments written by students

Student should use
Math.toDegrees()

81 “magic number, could use Math.toDegrees(Math.PI)”
“As someone mentioned in another code review, Java has

a convenience method called Math.toDegrees(). And
'theta' seems a bit abstract; how about newHeading?”

Magic numbers 209 “Don't use "magic" numbers like 1, 3, 5, etc. Explain
what these constants are.”

“Some brief comments would help to explain how the
leap year is being checked. It is difficult to determine
where these magic numbers come from otherwise.”

temp/tmp as variable
name

40 “name tmp var?”
“Rename temp to something useful”

Throw exception
rather than returning 0

4 “0 isnt a great number to return in this case, instead,
throw an exception”

“This case should never be reached, but by returning 0, it
seems as if everything would be fine if your code
reached this point. Consider throwing an exception, or
just turning the last else if into and else.”

Test for 0^0 as input 4 “0^0 does not meet preconditions so we do not have to
test for it.”

“0^0 is supposed to be unspecified, so here it will catch
a==0 first and just return 0, which works fine.”

1%m = 1 12 “1 % m always evaluates to 1.”
“1 % m should always be equal to 1”

Use for loop instead
of while loop

6 “A for loop is more appropriate here.”
“A for loop is more appropriate here. Also, you can just

use your drawRegularPolygon below.”

Table 2. Similar comments written by Caesar code reviewers.

In total, there were 784 comments about just 21 mistakes students made in just one semester of
6.005. Presumably there are many more similar mistakes that we did not locate during our
investigation. It would be useful to create a tool that makes it easier for students and staff
members to reuse similar comments without needing to recompose the same comment.

Comment Search was designed for three use cases: for users who know they want to reuse a
comment, users who forgot they wrote something similar before, and users who know they are
writing a new comment. Users who know they want to reuse a comment can treat the text area

20

as a search bar and write keywords to query their previous comment. Users who forgot they
wrote a similar comment before can begin to write a new comment in natural language, and
Comment Search parses the sentence for keywords and suggest previous comments that contain
the same keywords. Finally, because Comment Search’s design is non-intrusive, users who
know they are writing a new comment can ignore all of Comment Search’s suggestions.

3.2 User Interface
The Comment Search interface was built on top of the existing Caesar comment interface. The
existing interface looks as follows:

Figure 4. Caesar’s comment interface.

A user clicks on one or more lines of code to write a comment. Upon clicking, the lines are
highlighted and the yellow comment interface appears. The user enters a comment and presses
Enter. Then, the comment is saved, which looks like this:

Figure 5. A newly-saved comment in Caesar.

Comment Search integrates seamlessly with the existing interface. The user sees the same
yellow comment interface as in Figure 4 when trying to write a comment. As they write a
comment, the system treats their unfinished comment as a search query and queries similar
comments. These similar comments are loaded dynamically while the user is typing. The top
three similar comments are displayed for the user to select from. This balances showing enough
option to give variety while not overwhelming the user by showing too many.

21

Figure 6. The Comment Search interface with three similar comments displayed.

Comment Search is non-intrusive in that a user can write their own comment and ignore the
suggestions. Similar comments are listed outside of the main comment entry form so that their
appearance and disappearance does not distract from comment entry.

Matching keywords are bolded. Comment Search displays the comment author and the author’s
point reputation, which is the number of upvotes they have received for their comments.

In order to navigate the list of similar comments, the user can use his/her mouse or tab/arrow
keys. Initially, Comment Search only supported mouse events. Pilot users suggested that using
arrow keys might make Comment Search more efficient and natural to use, since the user is
already using his/her keyboard to type a comment. Furthermore, users are accustomed to using
arrow keys when using search interfaces such as the Google search bar. In order to teach the
user that they could use arrow keys, the highlighted div in the navigation list is circled by a
dashed border. This is similar to the border that surrounds a highlighted cell in a spreadsheet.
When a user inspects a similar comment, the user can see a context bubble showing the line or
lines of code which the similar comment is referencing, as shown in Figure 7.

22

Figure 7. Comment Search context bubble. When code reviewers hover over a suggested comment, they can see a
context bubble containing the lines of code that the original comment referred to. The italicized text that appears in

the textbox shows where the suggested comment will appear in the textbox if the user selects it.

The user can click on this context bubble to view the entire chunk of code in a new page.

When the user inspects a similar comment, the comment is displayed in the textarea in grey and
italics to demonstrate where it will go should the user select the comment. When a user selects a
similar comment (either by pressing enter or by clicking it), the similar comment is appended to
the bottom of the text, as shown below:

Figure 8. Comment Search text area after user selects a comment.

There are two ways a user might use a similar comment: they might want to use the entire thing,
or they might want to modify it for a new context. Comment Search makes it easy for the user to
do either. The user’s original query is selected so it is easy to delete (or navigate to the
beginning or end) if the user chooses to do so.

23

Comment Search is also available for a user when writing a reply and editing a comment:

Figure 9. Comment Search for a reply.

24

3.3 Implementation
Comment Search is written in the Django framework using HTML, CSS, Javascript, and Python.
It is a feature of Caesar. Caesar stores its data in a SQLite database.

The set of previous comments to be searched through is different for students and staff members.
This distinction is necessary because students are evaluated on their ability to write comments as
part of the class. Therefore, students are allowed to reuse any of their own comments so that
every comment they submit is their original work. Staff members can reuse any comment
written by any staff member. Most students write 200 comments over the course of one
semester, and as a group, staff members write over 5000 comments in one semester.

A major design consideration was whether to search for previous comments server-side or client-
side. The advantage of a server-side search is that Comment Search is faster to initialize. For
staff members, it takes several minutes to load all 5000+ staff comments from the server to a
client-side database, and more in places without high-speed internet. However, the advantage of
a client-side search is that once the comments are loaded, searching for comments is faster. The
Comment Search interface is dynamic, displaying updated search results every time the user
updates the search query. In an online classroom, this would mean around 20,000 students
requesting that the server perform a small search for every letter the user types into the textbox.
Since code review happens over two days, this would place a high load on the server and the
network. Comment Search needs to appear smooth in order for it to remain unintrusive, so it is
better for it to be slow to initialize than slow to work. Therefore, Comment Search uses a client-
side search engine, called Fullproof (http://reyesr.github.io/fullproof/).
Fullproof is a client-side scoring engine written in Javascript. It stores data in an IndexedDB
database in Mozilla Firefox and Web SQL for Google Chrome and Safari.

In order for the code review page to load smoothly while Comment Search loads previous
comments to the client-side database, Comment Search first loads only the comments written by
the user via an Ajax call. This takes around 10-20 seconds, during which time the code reviewer
is most likely reading code. Then, Comment Search performs a second Ajax call to load the rest
of the staff comments.

Comment Search scores each comment in the database against the query and returns a ranked
list. Scores are computed based on keyword similarity to the query; the higher the score, the
more relevant the comment is to the user’s query. The top three highest-scoring comments are
returned. These three comments must be scored above a threshold to avoid returning weak
matches. This threshold was determined by reviewing comment scores and noticing the
approximate score below which comments are almost always irrelevant.

In order to accommodate full English sentences as search queries, Comment Search modifies
queries and previous comments. Capitalization and punctuation are ignored; Common English

25

words, such as “you” and “they”, are removed in order to isolate technical keywords; words are
stemmed so that verb conjugations do not negatively affect the system’s performance; and
duplicate letters are removed to reduce search errors from misspellings. The database stores two
tables: one with all comments processed with the normal index and one with all comments
processed with the stemming index. The normal index is weighted higher than the stemmed
index. Figure 10 shows the post-processing pipeline.

Figure 10. Data processing pipeline of Fullproof scoring engine.

3.4 Evaluation
We deployed Comment Search in Caesar to be used for a full semester of 6.005. Out of 33,483
comments written, students and staff used Comment Search to reuse 264: nearly 1%.

3.4.1 Usability Evaluation
In order to evaluate the usability of Comment Search, Comment Search logged every time the
user interacted with the system. For the duration of this section, “selection” is defined as a user
deciding to reuse a comment.

 Navigation Selection

Keyboard 646 15

Mouse 25217 325

Table 3. Type of apparatus used to interact with the system.

Keyboard interactions were included in order to make Comment Search more efficient—it is
faster to press a key than to transfer from the keyboard to a mouse or trackpad. Additionally,
keyboard interactions emulate the way most people interact with search bars. The result that
mouse events were more common than keyboard events suggest that the keyboard affordances

26

were not obvious, so users did not know they had the option of using their keyboard to interact
with the system. While the system offers an efficient navigation system, it is not learnable.

Our design decision to prioritize safety over efficiency resulted in some users writing confusing
comments. When a user selects a similar comment, all of the text in the text area of the comment
form is highlighted and the similar comment is appended to the end, as shown in Figure 8.
Comment Search highlights this text so that it can easily be deleted or modified if necessary. A
few comments that people wrote contained remnants of this early search query. For example,
one comment read: “Where's your hashWhere's your hashCode and equals functions?” This
means that it was not obvious to some users that they needed to edit their comment before they
saved it. However, the occasional confusing comment is a preferable result to the alternative:
assuming the user wants to use only the similar comment and deleting their entire query.

Overall, the performance of the system shows that it is effective: 1% of comments were reused
using Comment Search. This means that despite students and staff members being randomly
assigned code to review, 1% of the time they found a repeated mistake, and Comment Search
was able to help. The next section will elaborate on the successes of the system’s effectiveness.

3.4.2 Effectiveness Evaluation
To evaluate the effectiveness of the system, we analyzed all of the comments written using our
system. We asked two questions: How often does a code reviewer find multiple locations to
reuse the same comment? And how often does a code reviewer change a previous comments
when reusing it? For the remainder of this thesis, we define a comments that change upon reuse
to be “evolving comments”.

Figure 11 displays the results.

27

Figure 11. Chart of comment reuses using Comment Search. The x-axis is the number of times a single comment
was reused: how many times a code reviewer found the same mistake. The bar chart is stacked: the blue represents
the number of comments that were repeated just once and the red represents the number of comments that changed

for the new context.

Out of the 264 reused comments created using Comment Search, nearly half (49%) were reused
multiple times, in 48 variations. This was a surprising result: we expected many fewer variations
of reused comments. Furthermore, we expected these multiple reuses to be fairly generic
comments about Java programming or software engineering style, rather than specific to the
problem set. However, we found a mixture:

“You should declare these private variables above”
“Reuse code and call another function you wrote which does the same thing”
“Make sure you go back and write this”
“I didn't do this either but I saw a person who has tweets that are named according to the test
cases they are assigned to (eg. tweetNoFollowing, or tweetNoMentions). It might be a good idea
to use those names, which are easier to understand than tweet1, tweet2...etc”
“Keeping a constant NUMBER_SIDES_IN_SQUARE and then using a call to
calculateRegularPolygonAngle(NUM_SIDES_IN_SQUARE) would help to avoid the use of a
magic number here.”

This means that even in the randomly assigned 10 chunks to review for a problem set, students
and staff found repeated mistakes, confirming that they are abundant.

28

The most interesting result of the system was evolving comments: comments that the user
modified when reusing. Slightly over a third (36%) of comments were changed over time. We
found several categories of these comments:

Grammar and spelling improvements
“You may also want to test the order at which words appear in a tweet vs the order they appear
in the lis of words.” → “You may also want to test the order at which words appear in a tweet vs
the order they appear in the list of words.”
“In your partitioning comment, say with test covers parts of the partition. This will help you
determine if you've covered all the necessary cases” → “In your partitioning comment, say
which test covers parts of the partition. This will help you determine if you've covered all the
necessary cases”

Modify for a new application
“Consider moving these in with your tests so that all the tests for guessFollowsGraph are in one
place and all the tests for influencers are in another place.” → “Consider moving these in with
your tests so that all the tests for writtenBy are in one place and all the tests for inTimespan are
in another place, etc.”
“val / 10 truncates since val and 10 are integers. Are you sure this is what you want?” →
“this.getFilterValue(Filter.BLUR) / 10 truncates since both values are integers.”

Elaboration
“Don't leave commented code in your commits.” → “Don't leave commented code in your
commits. I realize this is probably to help you while you were coding and possibly for reviewers
later, but the problem with this approach is that if someone were to change the code at the top,
they would very likely forget to change this which leads to trouble later.”
“Instead of testing if writtenByYourself == false, you can just use if(!writtenByYourself).” →
“Instead of testing if writtenByYourself == true, you can just use if(writtenByYourself).
The same applies to all the other if and else if statements. Use the ! operator to negate a
boolean, when testing for == false. For example, you can write if(!writtenAsCourseWork).”

Concision
“You can replace this block with a return statement to make the code easier to read and
understand.” → “You can replace this block with a single return statement to simplify the
code.”
“Remove unused code to increase readability--or, at the very least, include a comment as to why
this snippet is left in the code.” → “Remove unused code to increase readability--or include a
comment as to why this snippet is left in the code.”

29

More assertive/confident
“Since these variables do not change after you initialize them, it might be better to make them
final.” → “Since these variables don't change once you initialize them, you should make them
final.”

Although staff members have the option to reuse any staff member’s comments, staff members
almost always used their own comments. There are several possible explanations. The first
relates to the implementation. Comment Search loads all previous comments from the server in
two chunks: first the individual’s comments were loaded, and then all staff comments were
loaded. Perhaps some staff members were so fast to write comments in comparison to the load
time from the server that they weren’t presented with other staff comments. However, the data
shows that staff members did read and interact with other staff comments—they just didn’t select
them. The second explanation is that staff members remembered seeing a mistake and giving
feedback on it previously, and so they searched for their previous comment specifically.

When a user saves a new comment, Comment Search saves the ID of the reused comment so that
we can track the evolution of comments. There were 9 instances where Comment Search
recorded that a new comment had reused a previous comment but closer analysis revealed that
the two were clearly unrelated. This likely has to do with the similarity metric; two comments
are similar if they share a substring of at least 20 characters. It would be better to define
similarity as sharing keywords.

3.4.3 Applications for Code Search
The multitude of reused comments prompted the creation of a new tool. For many of the reused
comments, the lines of code they refer to contain a similar pattern.

For example, here are two similar comments and their associated lines of code:

val / 10 truncates
since val and 10
are integers. Are
you sure this is
what you want?

CSSFilterFunctions.put(“blur”,	
 val/10+”px”);

this.getFilterValue
(Filter.BLUR) / 10
truncates since
both values are
integers.

if(this.getFilterValue(filter.BLUR)	
 !=0)	

cssFilterValues.put(“blur”,	

Integer.toString(this.getFilterValue(Filter.BLUR)/10)
+	
 “px”);

Table 4. Example of similar comments and their correspondingly similar lines of code.

30

We can imagine writing a search query that would match a division sign followed by an integer
literal (one that does not contain a period). Searching for code would give staff members more
control over their review assignment process. I describe this new tool, called Code Search, in the
next chapter.

31

Chapter 4 Code Search

Code Search is a tool that finds chunks of code that match a pattern query in a large corpus of
code. In this chapter, I describe Code Search in detail; specifically, its pattern language,
implementation, and evaluation.

The motivation behind Code Search is to enable staff members to search for similar mistakes in
code. Traditionally, students and staff are randomly assigned ten chunks of code (typically a
single file) to which they provide feedback. This means that in an online classroom with
approximately 20,000 students, staff members will not read much student code every week. We
would like to create a tool that allows staff members to find patterns in code with the later goal
(beyond the scope of this thesis) of creating a user interface for staff to give feedback to all code
matches.

4.1 Pattern Language Design
We designed a pattern language to search through code. The language was designed for expert
programmers. There is very minimal syntax to learn in order to reduce the learning curve of the
user. It is language agnostic—the same pattern language can be used to search through code
Java, Python, and any other programming language with a context-free grammar.

The pattern language behaves like a keyword grep for text documents. Users type tokens they
wish to search for in code, much like a user might search through keywords in a text file. While
grep returns matching lines, Code Search returns the smallest subtree that satisfies a query.

4.1.1 Primitives
The main pattern primitive is any programming language token: identifiers (Pattern,
compile), keywords (for, if), literals (10, “a”), separators ({, .), and operators (<=, +). For
a primitive to match a token in the code, it must be an exact textual match. Therefore, 180 and
180.0 are different primitives and will match different tokens in the code. The pattern language
is case sensitive.

The second primitive is comments in code. These are expressed with the commenting operator,
described in the next section. The only way to search for comments in code is to enclose the text
in the commenting operator. For example, the query TODO will not match the code

//	
 	
 	
 	
 	
 TODO
but the query ///***TODO***/// would.

32

The converse is true as well: the query ///***System.out.println***/// would match
/*
	
 *	
 System.out.println(expectedMentionedUsers);
	
 */

but not
System.out.println(followsGraph);

For the duration of this thesis, we use primitive and query token interchangeably. This is contrast
to code tokens, which are tokens found in the code’s abstract syntax tree.

4.1.2 Operators
The pattern language has its own operators that allow users to include logic in the query.

Type Operator

Or |||

And &&&, Space

Expression Grouping (((
)))

Block Containment {{{	
 }}}

Not !!!

Comments in Code ///***	
 ***///

Table 5. Pattern language operators

We chose to use triple characters as operators in order to avoid namespace collision with other
programming languages. The pattern language can differentiate between &&, which matches the
and operator in Java code, and &&&, which is a logical operator in the language. Triple
characters as operators are still intuitive to an expert programmer.

The conventional precedence of boolean expressions is to evaluate in this order: primitives,
parentheses, not, and, or. Code Search follows this conventional precedence. Tokens and
comments in code are both primitives. Additionally, Code Search introduces containment to be
equal precedence as not. They are evaluated from left to right.

33

Or
Users can write patterns that match one expression or another expression. The query tweet0	

|||	
 tweet1 matches any block of code that contains the token tweet0 or tweet1:

tweet1	
 =	
 new	
 Tweet(0,	
 “alyssa”,	
 “is	
 it	
 reasonable	
 to	
 talk	
 about	

rivest	
 so	
 much?”,	
 d1);

private	
 static	
 Tweet	
 tweet0;

Note: because Code Search returns the smallest subtree that matches the query, in this case Code
Search would just return the identifiers tweet1 and tweet0, respectively, for the two lines of
code listed above. The full lines of code are included only for context.

And
Users can write patterns that match one expression and another expression. The query
Math.atan2	
 &&&	
 180.0 matches any block of code that contains both the tokens
Math.atan2 and 180.0, in any order:

double	
 targetAngle	
 =	
 java.lang.Math.atan2(targetY-­‐currentY,	

targetX-­‐currentX)/java.lang.Math.PI	
 *	
 180.0;

double	
 newHeading	
 =	
 (180.0/Math.PI)*(Math.atan2((double)	
 targetX-­‐

currentX),	
 double	
 (targetY-­‐currentY)));

Spaces between two expressions in a query are treated the same as the &&& operator. The query
above is equivalent to Math.atan2	
 180.0.

Expression Grouping
Users can use parentheses to group expressions in order to change order of operations. The
query ==	
 &&&	
 (((
 false	
 |||	
 true	
))) matches all code that contains the operator ==
followed by either the boolean false or true:

if	
 (writtenByYourself	
 ==	
 true)	
 {
return	
 true;

}

34

Block Containment
Users can specify that an expression must be fully contained by a subtree of code. The syntax is
token	
 {{{	
 expression	
 }}}. This means that the immediate parent of the token in the
code’s abstract syntax tree must fully contain the expression. The query for	
 {{{	
 forward	

turn	
 }}} matches all code in which the tokens forward and turn are inside of a for loop:

for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 4;	
 i++){
turtle.forward(sideLength);
turtle.turn(90);

}

Not
Users can write patterns that match subtrees that do not contain a particular expression. The
query drawSquare	
 {{{	
 !!!drawRegularPolygon	
 }}} matches all subtrees titled
drawSquare that do not contain any instance of drawRegularPolygon:

public	
 static	
 void	
 drawSquare	
 (Turtle	
 turtle,	
 int	
 sidelength)	
 {
for	
 (int	
 side	
 =	
 0;	
 side	
 <	
 4;	
 side++){

turtle.forward(sideLength);
turtle.turn(90);

}
}

public	
 static	
 void	
 drawSquare	
 (Turtle	
 turtle,	
 int	
 sidelength)	
 {

for	
 (int	
 side	
 =	
 0;	
 side	
 <	
 4;	
 side++){
turtle.forward(sideLength);
turtle.turn(90);

}
}
public	
 static	
 void	
 drawRegularPolygon	
 (Turtle	
 turtle,	
 int	

sidelength)	
 {
...

}

The second example is a valid match because the drawRegularPolygon function is not
contained within the drawSquare function. In the abstract syntax tree of this code,
drawSquare is not one of the ancestors of drawRegularPolygon.

For a query in which the not character is not inside a containment, such as !!!	
 (((private	

checkRep))) Code Search matches any file which does not contain the enclosed expression.
In this case, Code Search matches any file that does not contain the tokens private and
checkRep.

35

Comments in Code
Users can search for comments in code. The query ///***TODO***/// matches all comments
that contain the word TODO:

/*
	
 *	
 TODO	
 specification
	
 *	
 <p>	
 PS2	
 instructions
	
 *	
 This	
 class	
 must	
 implement	
 the	
 required	
 ADT	
 interface	
 and	
 MUST	

NOT	

	
 *	
 depend	
 on	
 photo	
 or	
 style	
 representations
	
 */

//	
 	
 	
 	
 	
 TODO

4.1.3 Return Type
The pattern language matches the smallest subtree (block, statement, or literal) that contain all of
the query words. If a file contains more than one instance of each at least one token, the file will
contain multiple matches. After searching through the entire corpus of programs, each subtree is
weighted based on token order, token containment, token proximity, and token distance in the
abstract syntax tree. The subtrees are sorted based on their costs and returned in order. The cost
calculation is described in more detail in section 4.2.

4.2 Implementation
For each file of student code, Code Search obeys the the basic pipeline displayed in Figure 12.
Code Search is written using the ANTLR framework, version 4, with a Java program. We use a
Python script to display the results.

Figure 12. Code Search pipeline.

4.2.1 Query Parsing
I wrote a context-free grammar to parse queries. The grammar respects order of operations.
They are applied in the following order: tokens and comments, parenthesis, containment and not,
and, or.

36

OR	
 →	
 '|||'
AND	
 →	
 '&&&'
NOT	
 →	
 '!!!'
OPENPAREN	
 →	
 '((('
CLOSEPAREN	
 →	
 ')))'
STARTCOMMENT	
 →	
 '///***'
ENDCOMMENT	
 →	
 '***///'	

OPENBRACE	
 →	
 '{{{'
CLOSEBRACE	
 →	
 '}}}'

queryUnit	
 →	
 exp
exp	
 →	
 orExp
orExp	
 →	
 andExp	
 (
 OR	
 andExp	
)*
andExp	
 →	
 atomExp	
 (
 AND?	
 atomExp	
)*
atomExp	
 →	
 parenExp	
 |	
 containExp	
 |	
 notExp	
 |	
 commentExp	
 |	
 Token
parenExp	
 →	
 OPENPAREN	
 exp	
 CLOSEPAREN
containExp	
 →	
 Token	
 OPENBRACE	
 exp	
 CLOSEBRACE
notExp	
 →	
 NOT	
 atomExp
commentExp	
 →	
 STARTCOMMENT	
 .*?	
 ENDCOMMENT

Figure 13. Context-free grammar for Code Search pattern language.

A Token is any integer or floating point number, any string, or the programming language’s
special characters. For Java, these are separators ({, .) and operators (=, &&). The grammar
skips whitespace. Spaces and &&& are both operators for and expressions and mean the same
thing.

The user supplies a query; for example, calculateRegPolyAngle	
 {{{	
 2	
 }}}. ANTLR
parses this query into a tree. Code Search keeps track of all of the primitives (which are the leaf
nodes of the query tree) for the next step.

4.2.2 Code Parsing
Code Search parses each file of student code into an abstract syntax tree. During this process,
Code Search creates a mapping of all tokens from the query to primitives (Tokens and
comments) in the code whose text matches.

Comments are by default skipped by programming language grammars. Code Search modifies
the grammars to send them to a hidden channel, which it can access during code parsing. This
way, users can search through comments in code as well.

37

Code Search is language agnostic: we include grammars for Java 7, Java 8, and Python. Code
Search attempts to parse the file using each grammar, and moves on to the next one in order
should the parsing return errors. We include both Java 7 and Java 8 because parsing a file using
the Java 8 grammar supplied by ANTLR is approximately 20 times slower than using the Java 7
grammar. Most files can be parsed using Java 7; only those that use new features, such as
lambdas, require Java 8.

4.2.3 Evaluation
Code Search treats primitives as boolean operators when matching a query against a code
subtree. Each primitive is associated with a True/False value, referring to whether that
primitive is or is not supposed to be found in the resulting code subtree, based on the query. For
example, the primitive while would have a positive (True) value for the query while and a
negative (False) value for the query !!!while.

To evaluate a query, Code Search recursively evaluates every node of the query tree using the
tokens from the parsed code. We think of each result of Code Search as a boolean expression in
conjunctive normal form (CNF): a conjunction of clauses, where each clause is the disjunction of
primitives. A clause is a list of primitives that satisfies a query and their associated
True/False value. Representing each Code Search solution in this way allows us to treat the
query as a Boolean expression and solve it with the classic definitions of And, Or, and Not.

Figure 14 contains pseudocode for matching a query against the code tree.

eval(query	
 subtree,	
 code	
 tree):
switch	
 (type	
 of	
 tree):

case	
 Query	
 Unit:
//	
 Query	
 Unit	
 is	
 in	
 the	
 form:	
 child
eval(child,	
 code	
 tree)
if	
 any	
 token	
 is	
 missing	
 from	
 the	
 code	
 and	
 its	
 boolean	

value	
 is	
 True:	
 //	
 the	
 query	
 requires	
 it
remove	
 that	
 clause	
 from	
 the	
 list	
 of	
 solutions

if	
 any	
 token	
 exists	
 in	
 the	
 code	
 and	
 its	
 boolean	
 value	

is	
 False:	
 //	
 the	
 query	
 requires	
 that	
 it	
 not	
 exist

remove	
 that	
 clause	
 from	
 the	
 list	
 of	
 solutions
return	
 all	
 remaining	
 solutions

case	
 Or:
	
 	
 	
 //	
 Or	
 is	
 in	
 the	
 form:	
 child	
 |||	
 child	
 |||	
 child...

result	
 =	
 []
for	
 each	
 child	
 in	
 or	
 statement:

38

	
 result	
 +=	
 eval(child,	
 code	
 tree)
return	
 result

case	
 And:
//	
 And	
 is	
 in	
 the	
 form:	
 child	
 &&&	
 child	
 &&&	
 child...
result	
 =	
 []
for	
 each	
 child	
 in	
 and	
 statement:

result	
 +=	
 eval(child,	
 code	
 tree)
return	
 cartesianProduct(result)

case	
 Atom:
//	
 Atom	
 is	
 in	
 the	
 form:	
 child
return	
 eval(child,	
 code	
 tree)

case	
 Paren:
//	
 Paren	
 is	
 in	
 the	
 form:	
 (((
 child	
)))
return	
 eval(child,	
 code	
 tree)

case	
 Contain:
//	
 Contain	
 is	
 in	
 the	
 form:	
 Token	
 {{{	
 child	
 }}}
eval(child,	
 code	
 tree)
for	
 each	
 result	
 in	
 child	
 eval:

construct	
 a	
 list	
 of	
 common	
 ancestors	
 //	
 all	

subtrees	
 that	
 contain	
 all	
 of	
 the	
 positive	

Tokens	
 and	
 none	
 of	
 the	
 negative	
 Tokens	
 in	
 the	

clause

if	
 Token	
 is	
 not	
 one	
 of	
 the	
 common	
 ancestors:
remove	
 this	
 clause	
 from	
 the	
 list	
 of	

solutions
return	
 all	
 remaining	
 solutions

case	
 Not:
//	
 Not	
 is	
 in	
 the	
 form:	
 !!!	
 child
//	
 In	
 order	
 to	
 negate	
 the	
 entire	
 CNF,	
 we	
 perform	

DeMorgan’s	
 law
result	
 =	
 eval(child,	
 code	
 tree)
for	
 each	
 primitive	
 in	
 result:

toggle	
 boolean	
 value
return	
 cartesianProduct(result	
 with	
 toggled	
 booleans)

case	
 Comment:
//	
 Comment	
 is	
 in	
 the	
 form:	
 ///***	
 text	
 ***///
if	
 text	
 is	
 empty:

return	
 a	
 list	
 of	
 all	
 comments	
 in	
 the	
 code
if	
 code	
 contains	
 comment	
 text:

39

return	
 [{code	
 token	
 nearest	
 Comment:	
 True}]
else:

return	
 [{empty	
 token:	
 True}]
case	
 Token:

if	
 code	
 tree	
 contains	
 token:
return	
 [{code	
 token:	
 True}]

else:
return	
 [{empty	
 token:	
 True}]

function	
 cartesianProduct(sets):

Take	
 the	
 cartesian	
 product	
 of	
 a	
 set	
 of	
 sets	
 to	
 return	
 all	

possible	
 permutations

ex.	
 sets	
 is	
 [[[A,	
 B],	
 [C,	
 D]]]
return	
 	
 [[A,	
 C],	
 [A,	
 D],	
 [B,	
 C],	
 [B,	
 D]]

Figure 14. Pseudocode for evaluation of Code Search.

The evaluation function returns every possible permutation of results in the code that matches the
query.

Code Tree then computes the smallest complete block of code that contains all of the positive
code tokens in a result set and doesn’t contain any of the negative code tokens. This is returned
as the smallest common subtree in the code.

4.2.4 Scoring
We score results using four metrics: ordering cost, containment cost, adjacency cost, and
distance cost. Each cost is a floating point value between 0 and 1, with low scores given to
strong candidates.

Ordering Cost
Results that match the query in order should have a lower cost than results whose tokens are out
of order in the code. Code Search returns a score of 0 if all positive tokens are in order based on
their location in the document and 1 otherwise.

Containment Cost
A token’s subtree is defined to be the subtree of the token’s immediate parent in the code’s
abstract syntax tree. Containment means that a token’s subtree contains another token. Results
that have containment should have a lower cost than results whose tokens are all siblings. Note
that if a user uses the containment characters in their query ({{{ and }}}), containment is
required.

40

To calculate containment cost, first we calculate the number of token containments: the number
of tokens that are contained inside another token’s subtree. As an example, several students
received the comment “A return statement breaks out of the function, so the use of else in not
necessary.” To search for patterns like this, a staff member might write the query if	
 return	

else. This could match several structures of code:

if	
 (writtenByYourself	
 ==	
 false)	
 {
if	
 (availableToOthers	
 ==	
 false)	
 {

return	
 false;
}
return	
 true;

}
else	
 {

return	
 true;
}

None of the tokens are contained inside any other token subtrees, so the number of containments
is 0.

if	
 (writtenByYourself	
 ==	
 true)	
 {
return	
 true;

}
else	
 {

...
}

The return token is contained inside of the if token’s subtree, and the else token is not
contained inside any token’s subtree. The number of containments is 1.

if	
 (writtenByYourself	
 ==	
 false)	
 {
if	
 (availableToOthers	
 ==	
 false)	
 {

return	
 false;
else	
 {

return	
 true;
}

}

The return token and the else token are each contained inside of the if token’s subtree, so
the number of containments is 2.

41

if	
 (writtenByYourself	
 ==	
 false)	
 {
if	
 (availableToOthers	
 ==	
 false)	
 {

return	
 false;
else	
 if	
 (writtenAsCoursework	
 ==	
 true)	
 {

return	
 true;
}

}

The return token is contained inside the if token’s subtree and the else token’s subtree. The
else token is contained inside the if token’s subtree. The number of containments is 3.

In order to normalize the cost between 0 and 1, we divide by the maximum number of
containments for a given query, which is !(!!1)

2
 where n+1 is the number of tokens in the query.

So, the containment cost cost is 1− !"#$%& !! !!"#$%"&'"#(
!"#$!%! !!"#$% !! !!!"#$!%&!"'

.

Adjacency Cost
Results with many tokens that are right next to each other should have a lower cost than results
with tokens that are far away from each other. Adjacency cost calculates the cumulative
closeness of every token in the result set based on how many tokens are between them. In order
to normalize this cost, we divide by the farthest possible distance between two tokens, i.e. the
total number of tokens in the file. Importantly, the weighting should not be linear. Two tokens
that are 100 tokens apart are about as bad as two tokens that are 150 tokens apart. However two
tokens that are 2 tokens apart are significantly more desirable than two nodes that are 52 tokens
apart. A logarithmic scale is more appropriate. Thus, the adjacency cost is
!!!(!"#$%& !! !!"#$% !!"#!!$!!" !!"#$%!"#$%& !! !!"#$)

!"#(!"#$%& !! !!"#$% !! !!"#)
.

Distance Cost
Results with tokens that are close to each other in the coding structure should have a low cost.
For example, if we want to search for two while loops right after each other, it should not matter
how large the while loops are. The distance cost measures the length of the path in the code tree
between two tokens. It is normalized by the maximum path length, which is twice the depth of
the tree. Thus, the distance cost is !"#! !!"#$! !!"#!!" !!" !!"#$%

!"#$!%! !!"! !!"#$!!!"#$% !! !!"#$.

The costs are then weighted to return a final cost used for ordering the results. Currently, the
costs are weighted as follows:
weightedCost = 0.4 × orderingCost
 + 0.1 × containmentCost

+ 0.25 × adjacencyCost
+ 0.25 × distanceCost

42

These values were chosen empirically. We anticipate determining a proper weighting for the
costs based on which results are most relevant to users.

4.2.5 Display
Once all results are scored, we order them from lowest cost to highest cost and display them all.
We highlight the tokens selected in the result. Figure 15 displays the top 4 results from a query
that matches while loops that should be for loops.

private-­‐sp15-­‐ps0-­‐beta-­‐0-­‐day-­‐[username]-­‐src-­‐turtle-­‐TurtleSoup.java,	

cost:	
 0.0980489985411
	
 	
 	
 	
 	
 	
 	
 	
 while(i<sides){
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i+=1;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 turtle.turn(180	
 -­‐	
 calculateRegularPolygonAngle(sides));
	
 	
 	
 	
 	
 	
 	
 	
 }

private-­‐sp15-­‐ps0-­‐beta-­‐0-­‐day-­‐[username]-­‐src-­‐turtle-­‐TurtleSoup.java,	

cost:	
 0.11197234122
	
 	
 	
 	
 	
 	
 	
 	
 while(adjustment<0){
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 adjustment	
 +=	
 THREE_SIXTY_DEGREES;
	
 	
 	
 	
 	
 	
 	
 	
 }

private-­‐sp15-­‐ps0-­‐beta-­‐0-­‐day-­‐[username]-­‐src-­‐turtle-­‐TurtleSoup.java,	

cost:	
 0.11763198412
	
 	
 	
 	
 	
 	
 	
 	
 while	
 (headingDiff	
 <	
 0)	
 {	
 headingDiff	
 +=	
 360d;	
 }

private-­‐sp15-­‐ps0-­‐beta-­‐0-­‐day-­‐[username]-­‐src-­‐turtle-­‐TurtleSoup.java,	

cost:	
 0.118557352166
	
 	
 	
 	
 	
 	
 	
 	
 while	
 (i<NUMBER_STARS){
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i++;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 drawStar(turtle,	
 sideLength);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 turtle.turn(STAR_TURN_ANGLE);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //calculate	
 the	
 side	
 length	
 of	
 the	
 next	
 largest	
 star

sideLength=(int)	

Math.round(sideLength*Math.pow(GOLDEN_RATIO,	
 3.0)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /Math.sqrt(GOLDEN_RATIO+1));
//next	
 three	
 lines	
 bring	
 the	
 turtle	
 to	
 a	
 spot	
 to	
 begin	

the	
 next	
 star
stepSize=(int)Math.round(sideLength*Math.pow(GOLDEN_RATIO

,	
 -­‐2.0));
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 turtle.forward(stepSize);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 turtle.turn(TURN_AROUND_ANGLE);
	
 	
 	
 	
 	
 	
 	
 	
 }

Figure 15. Code Search results. Each result shows the filename, cost, and block of code, with tokens highlighted.

43

4.3 Evaluation
I evaluated Code Search for its major use case: a teaching assistant for 6.005x who wishes to
search for student code that matches a certain pattern. The teaching assistant begins by writing a
query. Code Search returns a list of all blocks of student code that match the query pattern,
ranked in order of relevance. The teaching assistant then scans the list of code blocks and selects
the pertinent blocks. Most likely, after no more than a few minutes of scanning, the teaching
assistant will lose patience or interest. We estimate that the teacher can scan through 50 Code
Search results in a few minutes, so our evaluation only analyzes the top 50 results. If the query
does not match enough relevant code, the teaching assistant may try to modify the query to get
more hits.

4.3.1 Qualitative Evaluation
I evaluated Code Search in two ways: information retrieval accuracy and performance. To do
this, I collected 273 examples of reused comments (from Comment Search) from a semester of
6.005. I analyzed the lines of code that these comments addressed and wrote search queries for
Code Search that would find these lines. I ran these queries on the entire corpus of 6.005 files
from that problem set to see how many other examples of this mistake there were.

57 search queries covered 98 of the 273 reused comments (36%). 41 of the queries were
repeated: the same query could cover multiple comments due to repetitions and evolutions of
comments from Comment Search. Interestingly, several of the repeated queries were for
comments written by multiple people, supporting the need for the Code Search tool. Section
4.3.4 elaborates on the 175 reused comments which could not be described with a Code Search
query.

For testing, I focused on the first problem set of 6.005, in which students are still adjusting to
writing Java for the first time. Many reused comments were about semantic errors, which are
easy to capture with Code Search. Some examples are listed on the following pages.

44

Comment “You could call drawRegularPolygon in this method to keep the code DRY
[Don’t Repeat Yourself]. This loop is repeated in drawRegularPolygon.”

Query drawSquare	
 {{{	
 !!!drawRegularPolygon	
 {	
 }	
 }}}

Relevant
responses

public	
 static	
 void	
 drawSquare(Turtle	
 turtle,	
 int	

	
 	
 sideLength)	
 {
	
 	
 	
 	
 final	
 double	
 TURN_ANGLE	
 =	
 90.0;
	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 turtle.turn(TURN_ANGLE);
	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 turtle.turn(TURN_ANGLE);
	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 turtle.turn(TURN_ANGLE);
	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 turtle.turn(TURN_ANGLE);
}

public	
 static	
 void	
 drawSquare(Turtle	
 turtle,	
 int	

	
 	
 sideLength)	
 {
	
 	
 	
 	
 int	
 NUMBER_OF_SIDES	
 =	
 4;
	
 	
 	
 	
 for(int	
 i	
 =	
 0;	
 i	
 <	
 NUMBER_OF_SIDES;	
 i++)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 	
 	
 	
 	
 turtle.turn(RIGHT_ANGLE);
	
 	
 	
 	
 }
}

Redundant
responses

public	
 static	
 void	
 drawSquare(Turtle	
 turtle,	
 int	

	
 	
 sideLength)	
 {
	
 	
 	
 	
 int	
 NUMBER_OF_SIDES	
 =	
 4;
	
 	
 	
 	
 for(int	
 i	
 =	
 0;	
 i	
 <	
 NUMBER_OF_SIDES;	
 i++)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 	
 	
 	
 	
 turtle.turn(RIGHT_ANGLE);
	
 	
 	
 	
 }
}

Table 6. Code Search results for repeated code.

Of the top 50 results from this search, 45 were relevant. The other ones were all redundant due
to various combinations of parentheses matching. The single curly braces in the query are
necessary to avoid matching code such as drawSquare(turtle,	
 40); This code does not
contain drawRegularPolygon, but it also is not the targeted mistake.

45

Comment “why not a for loop? for(int i=0; i<sides; i++)”

Query while	
 {{{	
 (((++|||+=)))	
 !!!(((360|||360.|||360.0)))	
 }}}

Relevant
responses

while(i<sides){
	
 	
 	
 	
 i+=1;
	
 	
 	
 	
 turtle.forward(sideLength);
	
 	
 	
 	
 turtle.turn(180	
 -­‐	
 calculateRegularPolygonAngle(sides));
}

while(count<4){
	
 	
 	
 	
 turtle.forward(sideLength);	
 	
 	
 	
 	
 	

	
 	
 	
 	
 turtle.turn(angle);
	
 	
 	
 	
 count++;
}

Irrelevant
responses

while(turnAngle<0d||turnAngle>360d){
	
 	
 	
 	
 turnAngle+=((turnAngle<0d)?1d:-­‐1d)*360d;
}

Table 7. Code Search results for while loops that should be for loops.

In this case, I wrote a query to match while loops that should be for loops. I first wrote the query
as while	
 {{{	
 (((++|||+=)))	
 }}} which is more intuitive. However, this ended up
matching many chunks of code that used a while loop appropriately, such as the irrelevant
response in the table above. It turned out that for the specific problem set I tested, there was a
common case involving angle adjustments which did necessitate a while loop with a counter.
For this reason, this query excludes while loops that contain the number 360, which targets this
query for this specific problem set. 43 out of the top 50 results were relevant. The irrelevant
ones were for while loops that did not need to become for loops, such as the example above.

46

Comment “The specs already dictate that sides must be >2 so I'm not sure if this is
necessary.”

Query calculateRegularPolygonAngle	
 {{{	
 if	
 (sides	
 <=	
 2)	
 }}}

Relevant
responses

public	
 static	
 double	
 calculateRegularPolygonAngle(int	

sides)	
 {
	
 	
 	
 	
 if(sides	
 <=	
 2){
	
 	
 	
 	
 	
 	
 	
 	
 //check	
 if	
 sides	
 is	
 greater	
 than	
 2.
	
 	
 	
 	
 	
 	
 	
 	
 throw	
 new	
 RuntimeException("sides	
 must	
 be	
 >	
 2");
	
 	
 	
 	
 }else{
	
 	
 	
 	
 	
 	
 	
 	
 return	
 (sides	
 -­‐	
 2)	
 *	
 180.0d	
 /	
 sides;
	
 	
 	
 	
 }
}

public	
 static	
 double	
 calculateRegularPolygonAngle(int	

sides)	
 {
	
 	
 	
 	
 if	
 (sides	
 <=	
 2)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 return	
 -­‐1.0;
	
 	
 	
 	
 	
 	
 	
 	
 /*throw	
 new	
 IndexOutOfBoundsException();//is	
 it	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 better	
 to	
 have	
 some	
 sort	
 of	
 error	
 message?*/
	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 return	
 180.0*(sides-­‐2.0)/sides;
}

Redundant
responses

public	
 static	
 double	
 calculateRegularPolygonAngle(int	

sides)	
 {
	
 	
 	
 	
 if(sides	
 <=	
 2){
	
 	
 	
 	
 	
 	
 	
 	
 //check	
 if	
 sides	
 is	
 greater	
 than	
 2.
	
 	
 	
 	
 	
 	
 	
 	
 throw	
 new	
 RuntimeException("sides	
 must	
 be	
 >	
 2");
	
 	
 	
 	
 }else{
	
 	
 	
 	
 	
 	
 	
 	
 return	
 (sides	
 -­‐	
 2)	
 *	
 180.0d	
 /	
 sides;
	
 	
 	
 	
 }
}

Table 8. Code Search results for misunderstood method specifications.

In this case, there were only 7 total relevant responses. All of the rest were redundant due to
various combinations of parenthesis matching. It is worth noting that all 7 relevant responses
were in the top 9 returned responses, because of the way we perform our ranking.

47

Comment “possible bug here. if heading is a very negative number, say - 720, then the if
statement will only increment it to -360. To fix this, you should put a while loop
(while heading <0)”

Query calculateHeadingToPoint	
 {{{	
 if	
 {{{	
 <	
 0	
 +	
 (((360|||360.0)))	

}}}	
 }}}

Relevant
responses

public	
 static	
 double	
 calculateHeadingToPoint(double	

	
 	
 currentHeading,	
 int	
 currentX,	
 int	
 currentY,	
 int	
 targetX,	

	
 	
 int	
 targetY)	
 {
	
 	
 	
 	
 double	
 HeadingCartesian	
 =	
 (-­‐1*currentHeading	
 +	
 90);
	
 	
 	
 	
 /*
	
 	
 	
 	
 	
 *	
 use	
 same	
 coordinate	
 system	
 as	
 given	
 by	
 atan2
	
 	
 	
 	
 	
 */
	
 	
 	
 	
 if	
 (HeadingCartesian	
 <	
 0){
	
 	
 	
 	
 	
 	
 	
 	
 HeadingCartesian	
 =	
 HeadingCartesian	
 +	
 360;
	
 	
 	
 	
 }
	
 	
 	
 	
 double	
 angle	
 =	
 HeadingCartesian	
 -­‐	

	
 	
 	
 	
 	
 	
 (Math.atan2(targetY-­‐currentY,	
 targetX-­‐currentX)	
 *	

	
 	
 	
 	
 	
 	
 180/Math.PI);
	
 	
 	
 	
 if	
 (angle	
 <	
 0){
	
 	
 	
 	
 	
 	
 	
 	
 angle	
 =	
 angle	
 +	
 360;
	
 	
 	
 	
 }
	
 	
 	
 	
 return	
 angle;
}

Irrelevant
responses

public	
 static	
 double	
 calculateHeadingToPoint(double	

	
 	
 currentHeading,	
 int	
 currentX,	
 int	
 currentY,	
 int	
 targetX,	

	
 	
 int	
 targetY)	
 {
	
 	
 	
 	
 double	
 HeadingCartesian	
 =	
 (-­‐1*currentHeading	
 +	
 90);
	
 	
 	
 	
 /*
	
 	
 	
 	
 	
 *	
 use	
 same	
 coordinate	
 system	
 as	
 given	
 by	
 atan2
	
 	
 	
 	
 	
 */
	
 	
 	
 	
 if	
 (HeadingCartesian	
 <	
 0){
	
 	
 	
 	
 	
 	
 	
 	
 HeadingCartesian	
 =	
 HeadingCartesian	
 +	
 360;
	
 	
 	
 	
 }
	
 	
 	
 	
 double	
 angle	
 =	
 HeadingCartesian	
 -­‐	

	
 	
 	
 	
 	
 	
 (Math.atan2(targetY-­‐currentY,	
 targetX-­‐currentX)	
 *	

	
 	
 	
 	
 	
 	
 180/Math.PI);
	
 	
 	
 	
 if	
 (angle	
 <	
 0){
	
 	
 	
 	
 	
 	
 	
 	
 angle	
 =	
 angle	
 +	
 360;
	
 	
 	
 	
 }
	
 	
 	
 	
 return	
 angle;
}

Table 9. Code Search results for a bug in angle calculation.

48

In this case, the query appears to be written out of order (it is more intuitive to write
calculateHeadingToPoint	
 {{{	
 if	
 (<	
 0)	
 {{{	
 +	
 (((360|||360.0)))	
 }}}	
 }}}.
But when ANTLR parses an if statement into an abstract syntax tree, the arguments to the if
statement are a subtree of the if statement itself. Therefore the query needs to match this
structure.

4.3.2 Information Retrieval Accuracy
We wish to evaluate the information retrieval accuracy for the use case described above. We
model the teacher’s patience by assuming that the teaching assistant will look through no more
than 50 blocks of student code. Streaks of relevant code blocks will take less energy and time to
filter through, so if there are more than 50 code blocks in a row, we assume that the teaching
assistant will continue to look until he/she finds an irrelevant chunk.

The two metrics typically used to evaluate information retrieval accuracy are precision and
recall. Precision is the fraction of documents retrieved that are relevant. To calculate precision,
I counted the number of relevant results in the top 50 returned results by Code Search for 10
sample queries. This serves to analyze the ranking of Code Search’s results, because relevant
but poorly ranked results are not considered.

Student Mistake Query Precision @ 50

“You could use Math.toDegrees here
to convert angleToTarget from
radians to degrees.”

(((180	
 |||	
 180.0)))	
 Math.PI 1.0

“possible bug here. if heading is a
very negative number, say - 720, then
the if statement will only increment it
to -360. To fix this, you should put a
while loop (while heading <0)”

calculateHeadingToPoint	
 {{{	

if	
 {{{	
 <	
 0	
 +	
 360	
 }}}	
 }}}

0.52

“The specs already dictate that sides
must be >2 so I'm not sure if this is
necessary.”

calculateRegularPolygonAngle	

{{{	
 if	
 (sides	
 <=	
 2)	
 }}}

1.0

“It would be good to include a
comment on why you subtract
calculateRegularPolygonAngle from
180.”

drawRegularPolygon	
 {{{	

!!!///******///	

(((180|||180.0)))	
 -­‐	
 }}}

0.0

“You could call drawRegularPolygon
in this method to keep the code DRY.
This loop is repeated in
drawRegularPolygon.”

drawSquare	
 {{{	

!!!drawRegularPolygon	
 {}	

}}}

0.90

49

“Redundant import from the
java.lang package - java.lang.Math.”

import	
 java.lang 1.0

“Maybe document why you're
multiplying by 180. Specifying
Math.atan2(y,x)'s return range would
also do- also future programmers
who may want to modify your code
wouldn't have to look it up.”

///***	
 ***///	
 Math.atan2	

180.0

0.06

“You can just return the operation
instead of creating a new variable.
The @return specification already
describes this line.”

return	
 ; 0.08

“Keeping a constant
NUMBER_SIDES_IN_SQUARE and
then using a call to
calculateRegularPolygonAngle(NUM
_SIDES_IN_SQUARE) would help to
avoid the use of a magic number
here.”

turn	
 90 1.0

“instead of initializing i = 0 and
using a while loop, you could try
implementing using a for loop
instead”

while	
 {{{	
 (((++|||+=)))	

!!!(((360|||360.0|||360.))
)	
 }}}

0.86

Table 10. Precision values for 10 sample queries.

By looking at the table, it is clear that some queries return nearly entirely relevant results, and
others return almost no relevant results. This implies that Code Search is really only useful for
certain types of queries. This is discussed further in chapter 5.

Recall is the fraction of relevant documents that were retrieved. Calculating the total number of
relevant documents is difficult. When studies have evaluated search engines for recall, they have
used a combination of multiple other search engines as a way to count the total number of
relevant documents in the space. In this case, there are no other search engines, so this process
would need to be done manually.

Code Search improves staff member coverage of student code. Table 11. shows the coverage
ratio for the five Code Search queries that had high precision from Table 10. The number of
comments written and example found were for one problem set of one semester of 6.005.

50

Student Mistake Number of
comments
written by

students and
staff in Caesar

Number of
examples

found by Code
Search (in the

top 50)

Coverage
Ratio

“You could use Math.toDegrees here to
convert angleToTarget from radians to
degrees.”

46 50 1.09

“The specs already dictate that sides must
be >2 so I'm not sure if this is necessary.”

7 7 1.00

“You could call drawRegularPolygon in
this method to keep the code DRY. This
loop is repeated in drawRegularPolygon.”

11 45 4.09

“Redundant import from the java.lang
package - java.lang.Math.”

61 45 0.73

“instead of initializing i = 0 and using a
while loop, you could try implementing
using a for loop instead”

9 43 4.78

Table 11. Coverage ratios of code review with Code Search compared to without.

4.3.3 Performance
Because the searching happens online with a user, Code Search needs to be very fast. At worst,
a user would be willing to wait 10-15 seconds, but even this is pushing the limit. Currently,
Code Search is nowhere near fast enough. Fast queries (ones with small query trees and few
matching tokens in the code, such as

drawRegularPolygon	
 {{{	
 !!!///******///	
 (((180|||180.0)))	
 -­‐	
 }}}
take around 50 minutes, while some of the slower ones take well over several hours. The most
complex queries, such as

calculateHeadings	
 {{{	
 calculateHeadingToPoint(

currentX|||xcoords.get(i),	
 currentY|||ycoords.get(i),	

targetX|||xcoords.get(i+1),	
 targetY|||ycoords.get(i+1))	
 }}}

actually run out of stack space and cannot complete.

4.3.4 Limitations of Code Search
For the 175 reused comments that could not be expressed using a Code Search search query,
there were several common reasons why Code Search would not be useful.

51

Want to specify size of comment or size of line of code
“Make sure to go back and write this”

private	
 void	
 checkRep()	
 {
}

“This is way too long of a method - generally cap method to 40 lines or so. Breaking it up will
make your code more clear and readable.”

Need to have an understanding of variables and what they mean
“You should not need to synchronize this method. You don't want to sprinkle synchronized
without care.”
“Could this be written more simply as a division of 100 by the size of a row?”

double	
 width	
 =	
 1.0/row.size();
width	
 =	
 (double)Math.round(width	
 *	
 1000)	
 /	
 10;

Want to use a regular expression to identify a variable or string
“You don't seem to vary the capitalization of the usernames at all - how are you testing that
"alyssa" == "ALYssa"?”
“Since these are constants, their names should be in all caps. For example,
ERROR_1_STRING.”
“Math.atan2() takes arguments in the order: (deltaY, deltaX). I think you are doing it
backwards.”

52

Chapter 5 Discussion

In this chapter I will discuss some of the remaining questions I have not answered about
Comment Search and Code Search. Finally, in this chapter I will tie together the entire
Comment Search/Code Search system and explain how we foresee them to be used together in
the future.

5.1 Comment Search
In my introduction, I hypothesized that Comment Search would produce higher quality
comments. Our results from Comment Search support this. We found reused comments with
grammar and spelling improvements, concision, elaboration, and assertiveness: all positive
qualities. This means that Comment Search not only benefits code reviewers, who don’t need to
compose every comment anew, but the reviewees as well.

5.2 Code Search
In the evaluation of Code Search, I show that Code Search is nearly perfect at finding relevant
matches for some kinds of queries, and abysmal at finding relevant matches for other kinds of
queries. Code Search can find code that contains a specific pattern and whose tokens are in order
very successfully. Examples of this are finding while loops that should be for loops, finding
code that writes its own Math.toDegrees() function rather than using the Java one, and
finding a frequently repeated full line of code (if	
 (size	
 <=	
 2)). When there is uncertainty in
the query, such as an uncertain variable name or an uncertain order of tokens, Code Search
returns mostly irrelevant hits in the top 50 results. The relevant hits are sprinkled elsewhere in
the list of sometimes hundreds of thousands of results. And if a teacher wishes to search for an
uncertain variable name, such as any variable that is capitalized, then he/she cannot write any
query to do so. Naturally, as we find more of these limitations, we will modify Code Search’s
pattern language to accommodate as many queries as we can. I discuss some of the most
pressing modifications in the next chapter.

There are two additional applications we foresee of Code Search. The first one is to reuse
successful queries for future code submissions. After Code Search runs newly submitted
problem sets against a bank of queries, it will produce a list of matching code and an associated
comment to fix the error. A teaching assistant might need to verify that the matches are relevant
to the comment before passing the comment along to the students. Or, the verifier might be
removed from the process and Code Search will offer comments to students as suggestions.
Regardless, we would like to keep good queries written for Code Search as a bank of complex
patterns so that teaching assistants can reuse their work of creating queries.

53

The second application of Code Search is to be used in a non-educational setting. Code Search’s
pattern language is certainly useful for code reviews in an online classroom, as outlined in this
thesis, but it does not need to be limited to this application. It could be helpful for searching
through large software projects in a number of other settings, such as version control and
industry code reviews.

5.3 The Comment Search/Code Search System
Comment Search and Code Search each contribute to staff members having greater coverage of
student code for an online classroom. Together, they are stronger than the sum of their parts. In
Section 3.3.3, I describe how Comment Search illustrated the need for Code Search: we realized
we could search directly for the code to which the reused comments referred. Similarly,
Comment Search can give staff members an idea of which mistakes are common. This way, they
know which code patterns are worth the effort of writing a Code Search query.

While Code Search can certainly affect more students at once, Comment Search makes up for
Code Search’s limitations. There are many mistakes made in code that Code Search cannot
capture because they require an understanding of the code. For example, to understand whether
a program is thread-safe, a reviewer needs to have an understanding of how several methods, and
possibly even classes, relate to each other. Since there are a lot of different parts to consider, it
would be difficult to write a query that captures a common multithreading strategy. As another
example, to grade a method specification, a reviewer needs to read and understand the comment
in code. Code Search can help reviewers find a given method specification, but it would be
difficult to write a query to find all poorly written specifications. Fortunately, code reviewers
can still write comments about these more complicated errors using Caesar’s traditional code
reviewing interface and Comment Search.

Code Search is better suited for localized or syntactic mistakes—the “easy” mistakes found by
students. If Code Search automatically marks many of these mistakes, then student reviewers
will be forced to read code more carefully to make more complex critiques. This unintended
consequence of using the Comment Search/Code Search system may actually have a positive
effect on the quality of student reviewers.

54

Chapter 6 Future Work and Conclusion

6.1 Future work

6.1.1 Comment Search
Usability Improvements
There are a number of small improvements to Comment Search which would improve its
usability. We would like to order similar comments by date: users are more likely to reuse a
comment written more recently. We would like to display how many times a comment has been
reused. This additional information may provide insight for teaching assistants who want to
write a Code Search query about a highly repeated mistake.

Future Applications
Based on which lines of code on which users repeatedly comment, we can learn which patterns
in the code may call for that comment. We would like to suggest similar comments earlier in the
process of writing a comment: not just when a user begins to type, but when a user highlights a
piece of code.

6.1.2 Code Search
Information Retrieval Optimizations
It is critical that Code Search returns an optimal ordering of results in order for it to work. We
selected a weighting for the four scoring metrics (ordering, containment, adjacency, and
distance) based on empirical testing of a limited number of test cases. It would be better to select
weights based on real data from teaching assistants. We intend to use machine learning to adjust
the weights to which results are most relevant to teaching assistants.

In addition, Code Search is only useful for limited types of patterns: ones that are specific and
related to syntax. We would like to expand the types of patterns Code Search for which might be
used. One way to do this would be to allow users to specify query tokens with regular
expressions. This would resolve the problems outlined in section 4.3.4. This would mean users
will be able to write queries with a generic or filler variable ([A-­‐Za-­‐z0-­‐9_]*), which will
mean queries do not have to be so specific. Introducing regular expressions would also resolve
the pain in writing numbers in queries. Code Search matches literals perfectly: 360, 360.0, 360.,
and 360d are all different literals. Users need to write cluttered queries like
360|||360.0|||360.|||360d in order to express the number 360.

Finally, Code Search cannot be used at all if the student code cannot compile. In the future, we
will need to construct an abstract syntax tree of uncompilable code. ANTLR does not allow this,
so we may attempt to compile smaller sections of the student code that can be compiled.

55

Performance Optimizations
There are several ways to improve performance. The main change to drastically improve
performance will be to parse all student code ahead of time. Parsing all student code for a single
day’s submission of a problem set takes over 30 minutes. Clearly, Code Search needs to parse
the problem sets ahead of time and index the data.

We can perform pruning of our massive set of results to further improve performance. Code
Search was designed to return all matches to the query, and sort them by relevance, similarly to
common search engines. However, it turns out that Code Search returns far too many matches
than is necessary. For example, we ran the query

calculateRegularPolygonAngle	
 {{{	
 if	
 (sides	
 <=	
 2)	
 }}}
on all files of a single submission of a problem set. The query found 7 files that matched, but
1027 matches total. Most of these matches were various combinations of parentheses, as shown
in Table 8—most large Java files have nearly 100 parentheses. We can eliminate many of these
excess matches by eliminating any result whose score is significantly worse than the current best
score. In addition, Code Search sometimes returns 10-20 matches for a single block of code
within a single file, with different combinations of tokens inside. We should return only the best
result from a single block of code.

Usability Improvements
Once Code Search’s performance improves, we will perform a user test to evaluate Code
Search’s pattern matching language. We anticipate making three usability improvements here.
One non-intuitive requirement of the Code Search pattern language was illustrated in Table 8:
sometimes user is required to understand the structure of the code’s abstract syntax tree to write a
correct query. We would modify the grammar and the evaluation of Code Search in order to
reduce this. A second flaw in the language is the use of triple characters to denote logical
operators, such as &&& and !!!. We anticipate selecting a new set of operators that make the
queries look less cluttered. Lastly, we might choose to make &&& and spaces mean different
things to empower users to write more specific queries: perhaps a1	
 a2 should mean a1
followed by a2, while a1	
 &&&	
 a2 should mean a1 and a2 in either order.

Finally, Code Search will not be usable until it has a user interface. The user interface will be
composed of three components: a query bar, a display area, and a comments box. The teacher
can write their query in the query bar, aided by highlighting and parenthesis/brace matching to
guide the user to write legal queries. The teacher can read matching student code in the display
area. The display area will show only the relevant lines of code and highlight tokens so it can be
easily read. The display area may only show 10 hits per page, but the teacher can continue to
select relevant blocks of code on subsequent pages. The teacher will select code blocks to
comment on, and write a comment in the comment bar. The teacher can also write a different
comment for different selections if desired.

56

Future Applications
We anticipate using the queries written for Code Search to build a database of rules for student
code. Using Code Search, these rules can be stronger than the simple ones written by checkstyle,
which check for unused imports and magic numbers.

6.2 Conclusion
In this thesis, I set out to answer the question “How can software engineering teachers give more
qualitative feedback to their students in an online classroom setting?” We developed two tools
that work together to support teachers in this endeavor. Comment Search allows teachers to
rapidly review student code. It also provides insight into common mistakes and stylistic patterns
by students. Code Search allows teachers to powergrade student code, potentially affecting
several times more students than would be possible without the tool.

Both of these tools allow staff members to have greater coverage of student code. But so do
other tools that cluster student code. What separates these tools from those automated tools is
that Comment Search and Code Search take advantage of human intelligence to nearly eliminate
mistakes. Because this is a classroom setting, mistakes are fatal: a student who receives an
incorrect comment may not realize that it is a mistake, and may learn the wrong thing. Comment
Search and Code Search require that any comment given to a student is verified by an instructor
as appropriate. While neither Comment Search nor Code Search give teachers the same
relationships with students in an online classroom as with a traditional classroom, they take large
steps towards improving feedback for students.

57

References

[1] Mason Tang. "Caesar: A Social Code Review Tool for Programming Education."
M.Eng. Thesis, Massachusetts Institute of Technology, 2011.

[2] Basu, S., Jacobs, C., and Vanderwende, L. Powergrading: a Clustering Approach to
Amplify Human Effort for Short Answer Grading. TACL 1, (2013), 391–402.

[3] Michael Brooks, Sumit Basu, Charles Jacobs, and Lucy Vanderwende. 2014. Divide and
correct: using clusters to grade short answers at scale. In Proceedings of the first ACM
conference on Learning @ scale conference (L@S '14). ACM, New York, NY, USA,
89-98.

[4] R. Smith and S. Horwitz, "Detecting and measuring similarity in code clones," In Proc.
of IWSC'09, 2009.

[5] John DeNero and Stephen Martinis. 2014. Teaching composition quality at scale: human
judgment in the age of autograders. In Proceedings of the 45th ACM technical
symposium on Computer science education (SIGCSE '14). ACM, New York, NY, USA,
421-426.

[6] Stephanie Rogers, Steven Tang, and John Canny. 2014. ACCE: automatic coding
composition evaluator. In Proceedings of the first ACM conference on Learning @ scale
(L@S '14). ACM, New York, NY, USA, 191-192.

[7] J. Huang, C. Piech, A. Nguyen, and L. Guibas. Syntactic and functional variability of a
million code submissions in a machine learning mooc. In AIED 2013 Workshops
Proceedings Volume, page 25, 2013.

[8] Karger, D. R., Oh, S. & Shah, D. (2011). Iterative Learning for Reliable Crowdsourcing
Systems. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira & K. Q.
Weinberger (eds.), NIPS (p./pp. 1953-1961).

[9] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data (SIGMOD '03). ACM, New York, NY,
USA, 76-85.

[10] Gail C. Murphy and David Notkin. 1996. Lightweight lexical source model extraction.
ACM Trans. Softw. Eng. Methodol. 5, 3 (July 1996), 262-292.

[11] Greg J. Badros. 2000. JavaML: a markup language for Java source code. Comput. Netw.
33, 1-6 (June 2000), 159-177.

[12] Robert C. Miller. Lightweight Structure in Text. PhD thesis, Computer Science
Department, School of Computer Science, Carnegie Mellon University, May 2002.
Published as CMU Computer Science technical report CMU-CS-02-134 and CMU

58

Human-Computer Interaction Institute technical report CMU-HCII-02-103.

[13] Roger F. Crew. 1997. ASTLOG: a language for examining abstract syntax trees. In
Proceedings of the Conference on Domain-Specific Languages on Conference on
Domain-Specific Languages (DSL), 1997 (DSL'97). USENIX Association, Berkeley,
CA, USA, 18-18.

[14] William G. Griswold, Darren C. Atkinson, and Collin McCurdy. 1996. Fast, Flexible
Syntactic Pattern Matching and Processing. In Proceedings of the 4th International
Workshop on Program Comprehension (WPC '96) (WPC '96). IEEE Computer Society,
Washington, DC, USA, 144-.

[16] Terence Parr, The Definitive ANTLR 4 Reference, Pragmatic Bookshelf, 2013.

