
Sinch: Searching Intelligently on a Mobile Device

by

Rajeev Nayak

S.B., Course VI M.I.T., 2010

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 20, 2010

Certified by. .
Robert C. Miller

Associate Professor
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Sinch: Searching Intelligently on a Mobile Device

by

Rajeev Nayak

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Sinch is an application that allows mobile device users to obtain answers to their
questions without having to perform a web search in their mobile browser. Questions
are answered by human beings using Mechanical Turk, an online labor market for
simple human computation tasks. Workers on Mechanical Turk can search for answers
using their desktop browsers, free from the numerous shortcomings of browsing the
internet on a small mobile device while in a potentially distracting situation. Sinch
contributes an URL-rewriting proxy browser that can be embedded in Mechanical
Turk tasks to track browsing history, text selections, and other user events. It also
introduces two ways to improve the credibility of human-generated answers: providing
multiple answers to the same question and including a browsing history with each
answer. The Sinch application also allows users to view answers in their original
context on a web page, using a custom mobile browser to highlight the answer text
on the web page and zoom into it. Evaluations demonstrate that Sinch is capable
of delivering correct answers in a timely manner and investigate the effectiveness of
providing multiple answers and a browsing history for each answer.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

3

4

Acknowledgments

First of all, I’d like to thank Rob Miller for being an amazing thesis supervisor.

Without his insightful ideas and constant guidance, writing this thesis would not

have been even close to possible. He was the driving force behind the project from

the beginning, and through the entire process I never ceased to be in awe of his vast

expertise and innovative mind.

I’d also like to thank Katrina Panovich, Michael Bernstein, Max Goldman, Adam

Marcus, David Crowell, Greg Little, Jones Yu, and the rest of the User Interface

Design group for helping me brainstorm and providing great feedback about my

project. Their advice made me confident that my project was always continuing in

the right direction.

A special thanks goes out to Jeff Bigham for his invaluable help with the imple-

mentation of my project. He graciously provided his code as an example for me to

follow, and he promptly answered all of my annoying questions when I first started

implementing and I was floundering with my limited web programming experience. I

definitely couldn’t have done any of this without him.

Finally, I’d like to thank my parents, Raghuveer and Anita Nayak, and my brother,

Vinay, for supporting me through this entire process. My brother was always there to

talk about basketball and take my mind off work, my dad provided an endless supply

of bad jokes to entertain me, and most importantly, my mom tirelessly listened to my

stressful rants and always made me feel better about everything. I can’t express how

much my family has helped me not only through the process of writing this thesis,

but through my entire education.

5

6

Contents

1 Introduction 11

2 Related Work 17

2.1 Question Answering Services . 17

2.1.1 Human-Powered Services . 17

2.1.2 Automated Services . 18

2.2 Mobile Web Search . 19

2.3 Collaborative Web Search . 20

2.4 VizWiz and TurKit . 21

3 Design 23

3.1 Asking a Question . 23

3.2 Answering a Question . 26

3.3 Viewing Answers . 28

3.4 Design Iteration . 31

3.4.1 Version 1 . 31

3.4.2 Version 2 . 32

3.4.3 Version 3 . 33

3.4.4 Version 4 . 34

4 Implementation 37

4.1 The Database . 37

4.1.1 The Questions Table . 39

7

4.1.2 The Answers Table . 39

4.1.3 The Web Pages Table . 39

4.1.4 The Text Selections Table . 39

4.2 The Mobile Application . 40

4.2.1 The Database Class . 40

4.2.2 The Service . 40

4.2.3 The Activities . 41

4.3 The TurKit Script . 44

4.4 The Mechanical Turk Task . 45

5 Evaluation 47

5.1 Evaluating Latency . 48

5.1.1 Turker Latency . 48

5.1.2 Mobile Search Latency . 49

5.1.3 Results . 49

5.2 Evaluating Correctness . 51

5.2.1 Experiment Design . 51

5.2.2 Results . 52

5.3 Evaluating Confidence . 55

5.3.1 Experiment Design . 55

5.3.2 Results . 57

6 Conclusion 61

6.1 Future Work . 62

A Questions 67

8

List of Figures

1-1 Answering a Sinch question in a Mechanical Turk task. 13

1-2 A Turker’s browsing history displayed in the Sinch mobile application.

The web page containing the answer text is indicated with a yellow

highlighter icon. 14

3-1 The three major user interfaces of the Sinch system: question asking,

question answering, and answer viewing. 24

3-2 The interface for asking a Sinch question with the standard Android

keyboard open. 24

3-3 The Android speech input modal dialog box in each of its two states:

recording and processing. 25

3-4 A single Sinch task as seen in the Mechanical Turk task browsing in-

terface. This is the standard expanded form of a Mechanical Turk task

listing. 26

3-5 The Sinch Mechanical Turk interface. 27

3-6 The four stages of the drill-down interface for viewing answers: list of

questions, list of answers, answer details, and answer web page. . . . 29

3-7 The answer list interface before any answers have been submitted. A

notification at the top indicates that an answer has just been submitted. 30

4-1 The four major components of the Sinch system architecture. 38

4-2 The five activities in the Sinch Android application. 42

9

5-1 Average search times of Turkers and iPod Touch users over the three

question difficulties. 50

5-2 The number of correct answers that each Turker provided. 53

5-3 The fraction of answers that were correct for each question. The ques-

tions are shown in abbreviated form; the full questions can be found

in appendix A. 53

5-4 The number of web pages visited by Turkers while finding answers. . 55

5-5 The Mechanical Turk task web page for the confidence experiment,

shown after the Turker has already revealed 3 additional answers and

expanded 2 web page lists. 56

5-6 The number of new answers viewed, web page lists expanded, and

web page links clicked for each question answered by Turkers in the

confidence experiment. 58

10

Chapter 1

Introduction

There are many inherent problems with web searching on a mobile device. Mobile

device browsers do their best to emulate their desktop counterparts, but many prop-

erties of mobile devices inevitably make web searching very cumbersome:

1. Small screen size. The screen of any mobile device is much smaller than a

desktop monitor, which makes it very hard for users to find the information

they are searching for. This is especially difficult when the answer to a search

query is embedded within a page full of text.

2. The “fat finger” problem. Using a finger as a pointing device on such a

small screen makes clicking on small targets much tougher. Users may have to

navigate through multiple links to find what they are looking for, and this “fat

finger” problem hinders that process. In addition, typing on a small keyboard

is both slower and less accurate than typing on a normal-sized keyboard.

3. Poor network connection. Mobile devices frequently have bad network con-

nections, whether it be 3G or WiFi. Just like the “fat finger” problem, this

is also an issue when users have to navigate through many web pages when

performing a web search.

4. Situational disabilities. People are often walking, driving, or otherwise dis-

tracted when they need information in a mobile setting. In these situations,

11

they cannot focus their full attention on their mobile device for an extended

period of time, if at all.

This thesis describes Sinch, a mobile application that addresses these problems

with web searching on a mobile device. The Sinch application allows users to type

or speak questions that would have otherwise prompted a mobile web search. Sinch

uses human computation, utilizing people who can perform web searches on their

desktops in order to find correct and concise answers to these questions. These

human-generated answers are returned to the mobile device users, eliminating the

need for a mobile web search.

Various systems have already been created to deal with these problems with mobile

web search. Services like ChaCha [3] allow mobile device users to text them questions.

Their employees search for the answers to submitted questions and send the answers

back via text. Other mobile search services provide answers using other sources of

human computation, such as large online communities [5] or users’ social networks [1].

Sinch uses a different approach to providing human-generated answers: Mechanical

Turk.

Mechanical Turk is an online labor market developed by Amazon that allows users

to pay people small amounts of money to perform simple human computation tasks.

These tasks are posted by requesters: people who are seeking information that cannot

be easily obtained using just a computer. Tasks are performed by Mechanical Turk

workers, or “Turkers”. Once a task is completed, the answer provided by the Turker

is delivered to the requester and the Turker is paid their compensation. Using these

tasks on Mechanical Turk, Turkers can be used to provide answers to mobile search

queries for Sinch.

Unlike text messaging services, which are limited to providing short, plain-text

answers, Sinch has more flexibility when returning answers. Sinch uses this flexibility

to bolster the credibility of answers in two ways:

1. Multiple answers are provided for each question. Answers provided by

human beings are not always accurate. In addition, questions can be worded

12

Figure 1-1: Answering a Sinch question in a Mechanical Turk task.

ambiguously and interpreted differently by people providing answers. Sinch

provides multiple answers to each question in order to deal with these issues.

Returning multiple answers increases the probability of at least one of them

being correct. Furthermore, seeing multiple correct answers solidifies users’

confidence in those answers.

2. Users are shown the browsing history that led to each answer. Viewing

an answer provided by a human being in its original context on a web page gives

it more credibility. The Sinch Mechanical Turk task includes an inline browser

that Turkers are required to use. This browser tracks their browsing history

and all of their text selections. Sinch users are shown the entire browsing

history that led to each Turker-generated answer so that they can view the

answer in its original context. In order to make this even easier, web pages

from which the Turker copied and pasted text that contributed to their final

answer are indicated. Users can view these pages in a custom mobile browser

that highlights the copied and pasted text and zooms into it. This helps users

13

Figure 1-2: A Turker’s browsing history displayed in the Sinch mobile application.
The web page containing the answer text is indicated with a yellow highlighter icon.

14

find the answer in context as fast as possible, despite their mobile device’s small

screen size.

Two critical aspects of the Sinch system are the latency and correctness of answers.

Users in mobile settings need answers quickly, but Sinch has an inherent latency

in its human computation. The time that it takes Turkers to return an answer

should be comparable to the time it would take a user to find that answer on their

mobile browser. Furthermore, Turkers should be able to provide correct answers on

a consistent basis. Even though multiple answers are provided for each question, the

percentage of correct answers must be high enough to guarantee that at least one

Turker-generated answer is correct for each question.

Two evaluations were performed in order to test the latency and correctness of

the Sinch system. The first evaluation was run before Sinch was implemented. It

compared the search times of Turkers to the search times of people using an iPod

Touch when answering the same set of questions. This experiment established that

Turker latency was acceptably low. The second evaluation was run after the Sinch

system was complete. Turkers used the Sinch Mechanical Turk interface to answer

questions, and the correctness of their answers was assessed. This evaluation also

tested their browsing habits while searching for answers.

A third evaluation was run after the system was implemented. This evaluation

tested the effectiveness of providing users with multiple answers and a browsing his-

tory for each answer. Users were shown questions and answers generated from the

second evaluation. They were asked to determine whether a particular answer to a

question was correct or not, and they were paid based on their speed and accuracy.

While they assessed each question and answer, they had the option of viewing more

answers to the question or viewing the browsing history for any answer. A significant

number of users viewed either multiple answers or browsing histories before they were

fully confident in their answer to the question.

The fully-implemented Sinch system provides a convenient way for mobile device

users to obtain answers to questions without having to use their mobile browser. It

contributes an inline browser that can be used in Mechanical Turk tasks to track

15

browsing history, text selections, and possibly more user events. Finally, it also intro-

duces two ways to provide more credibility to human-generated answers: providing

multiple answers to the same question and a browsing history for each answer.

The rest of this thesis details the design, implementation, and evaluation of Sinch.

Chapter 2 covers other work related to Sinch. Chapter 3 covers the design of the sys-

tem and its user interfaces. Chapter 4 covers implementation of both the mobile

application and the Mechanical Turk task. Chapter 5 discusses the three-stage eval-

uation of Sinch. Chapter 6 provides a conclusion and chapter 7 outlines possibilities

for future work on the project.

16

Chapter 2

Related Work

2.1 Question Answering Services

There are many existing services that attempt to provide answers to naturally phrased

questions. As opposed to traditional search engines like Google which present users

with a page of search results, these services return a concise answer, similar to an

answer one might get after posing the same question to a human. Some of these

services employ human computation, while others are completely automated.

2.1.1 Human-Powered Services

Most human-powered question answering services provide their answers in one of two

ways: using a large online community or using a small set of designated question

answerers. A large community brings a vast variety of expertise on different subjects,

as well as a free method of generating questions. Designated answerers are more

reliable than random individuals in a large online community, but this is because

they are typically paid a compensation for answering questions.

Yahoo! Answers [7] is an example of a service that uses the community approach

to answering questions. Users can post a question on the Yahoo! Answers website,

and other users will post answers to that question. In order to address the reliability

issue, the community is allowed to vote on potential answers so that the best answer

17

for each question will eventually rise to the top. In addition, the question asker can

personally select an answer to be marked as the best one. Sinch operates under the

same assumptions as Yahoo! Answers; Turkers are not guaranteed to be reliable, so

Sinch provides multiple answers to each question as well.

ChaCha [3] is a mobile question answering service that uses designated answerers,

called Guides. Guides are hired by ChaCha, and they are paid to answer incoming

questions. Questions are asked through text messages, and answers are returned using

text messages as well. As opposed to Yahoo! Answers, ChaCha only provides a single

answer to each question, because their Guides are trusted to be reliable sources.

2.1.2 Automated Services

One of the oldest automated question answering services is Ask.com, formerly known

as Ask Jeeves. Ask.com has always encouraged the use of natural language ques-

tions, separating themselves from other search engines. However, just recently they

revamped both their front-end and back-end to specifically focus on providing answers

to questions posed in natural language [2]. Their new approach involves indexing ex-

isting answers on sites like Yahoo! Answers and ChaCha. This works in conjunction

with a fallback onto human computation in case of failure. If an answer cannot be

automatically generated, the question is posed to the Ask.com online community so

that a human can provide an answer.

Wolfram Alpha [6] is a more recent automated question answering service. Al-

though one of its primary goals is mathematical computation, it extends this focus

into the question answering domain, allowing free-form input and returning specific

answers. Its answers are presented in a unique format in comparison to other search

engines. First, it returns a structural diagram of the parsed input question, showing

a deconstruction consisting of the keywords that it extracted. Second, it represents

the answer with a customized structure as well. For example, if the answer is easily

readable in tabular format, it will automatically generate a table and provide extra

customization options.

START [11] is a natural language question answering system developed at MIT

18

CSAIL. Like Wolfram Alpha, it provides a single, structured answer to each given

question. However, instead of analyzing the question’s structure, START uses key-

words in the question to associate it with a question that it already knows the answer

to. Since the same information need can be posed as a question in many different

ways, START saves only one question for each unique information need. When an-

other formulation of the same question is submitted to the system, it finds that saved

question and then fetches the corresponding structured answer to return to the user.

Finally, Google has also recently added question answering features to their search

engine [4]. The new functionality is mostly designed to handle trivia questions in

particular. The unique feature that Google’s question answering brings to the table

is the citation of sources. Each answer is accompanied by a list of web pages where

it was found, giving it credibility. Similarly, Sinch logs the browsing history of each

Turker as they find an answer and presents the list of visited web pages to the mobile

device user in addition to the answer.

2.2 Mobile Web Search

Information needs in mobile settings have been previously observed and analyzed.

A study conducted by Sohn et al [15] examined the types of questions people need

to address while they are away from their computers. They found that some of the

most frequent information needs are answers to random trivia questions or locations

of nearby points of interest. These question types work well with Sinch, because

they can be answered concisely and easily by Turkers. The study also showed that

many of these information needs were not urgent and could be answered at a later

time, if at all. This also bodes well for Sinch, because users will not be put off by the

latency in the system introduced by Turkers while they browse for the correct answer.

Finally, over half of the people who decided to find the answer to their query at a

later time did so because they were biking, driving, or busy with a task or a meeting.

Sinch attempts to alleviate these situational disabilities in two ways. First, it allows

users to speak their question into their mobile device, which can easily be done while

19

biking or driving. Second, users can wait for concise answers rather than searching

and browsing on their own, which would require their attention over a period of time.

A previously built system called SearchMobil [14] addresses the problem of a small

screen while searching on a mobile device. It utilizes a formatter called SmartView,

which parses the HTML of web pages to divide it into logical regions. When a

user navigates to a web page in their mobile browser, SmartView presents a fully

zoomed-out version of the page with each region outlined. Users can click on a region

to zoom into it. In SearchMobil, the search terms are automatically highlighted in

the resulting web pages. In addition, each SmartView region is augmented with an

annotation of how many search terms were found in it. This is intended to give the

user an idea of which region is most relevant to their search. Since Sinch tracks all

text that the Turker highlights while they browse, the exact locations of relevance

are known. Thus, rather than highlighting all search terms and zooming out, Sinch

highlights exactly what the Turker highlighted and zooms into it.

2.3 Collaborative Web Search

SearchTogether [13] is an application developed by Microsoft Research that facilitates

collaboration with others while web searching. Users can create search sessions and

share them with other users, so that they can either parallelize the searching effort

synchronously or individually contribute to the search asynchronously. Each search

session focuses on a single question that needs to be answered. As users perform

search queries in a session, they are logged and presented to other users so that they

are aware of queries that have already been used. When a user finds a relevant web

page, they can comment on it and recommend it to the other searchers in that session.

Sinch is similar to a collaborative search client in that information about a search is

shared between two people. However, the information flow is only one-way in Sinch.

The mobile user should not be searching or browsing on their mobile device; they

should just receive information about searches performed by Turkers. Sinch provides

the mobile device user with a full browsing history for each answer returned by a

20

Turker, which encapsulates all of the search queries performed by the Turker, as well as

all other web pages that they visited. Instead of letting Turkers manually recommend

pages like SearchTogether, Sinch automatically discerns the relevant pages by tracking

the Turker’s text selections that contribute to their final answer.

2.4 VizWiz and TurKit

VizWiz [10] is an iPhone application that helps blind people find objects in their

immediate surroundings. Users take a picture using their iPhone and ask about an

object that they want help finding. When the question is submitted, the picture,

the audio, and a transcription of the audio are posted in a task on Mechanical Turk.

Turkers are presented with an interface that includes the picture sent by the iPhone

user, the recorded question, and its text transcription. They enter the answer to the

question, and this answer is returned to the iPhone application, which automatically

reads it out to the user. Sinch uses the same application structure as VizWiz. It

starts with a mobile phone user asking a question on their phone. That question is

then sent to a Turker to answer it, and then the answer is returned to the mobile

phone user.

VizWiz uses TurKit [12] to create tasks in real time on Mechanical Turk. TurKit is

a toolkit that wraps around the Mechanical Turk API, allowing programmers to easily

incorporate human computation into complex algorithms. It provides a Javascript

library with easy access to functions that create new tasks on Mechanical Turk on

demand. Sinch also uses TurKit to post tasks on Mechanical Turk when new queries

are submitted through the mobile Sinch application.

The TurKit algorithm used by VizWiz to create new tasks is called quikTurkit [10].

The goal of quikTurkit is to provide nearly real time answers, since the users of VizWiz

would ideally want their answers immediately. The quikTurkit algorithm runs in an

infinite loop, checking the status of all active questions and all active tasks at each

iteration of the loop. Since answers provided by Turkers are unreliable, quikTurkit

sets a desired number of answers for each submitted question. The algorithm only

21

posts tasks if there is at least one question that has not reached the desired number

of answers. After a certain period of time, all active tasks are removed and new tasks

are posted to replace them. This increases the chances of new Turkers picking up the

task, since most Turkers use the default sorting by most recent when browsing for

tasks. Other customization options are also available to further improve the chances

of recruiting new Turkers as fast as possible.

In addition to these measures taken to quickly recruit Turkers, VizWiz uses an-

other trick to speed up response time. Instead of making Turkers answer one question

per task, VizWiz includes a queue of multiple questions per task. Therefore, when

a Turker picks up a task, they will have to answer numerous questions in succession

before the task is complete. If a Turker is working on a task when a new question is

submitted by an iPhone user, that question is automatically pushed to the front of

that Turker’s queue. As soon as the Turker finishes answering their current question,

they will be asked to answer the newly submitted question. This greatly reduces the

latency of Turker responses to questions. Sinch similarly demands nearly real time

answers to queries, so it employs both quikTurkit and the question queue model to

minimize the latency inherent in Mechanical Turk.

22

Chapter 3

Design

The Sinch system consists of three major user interfaces, reflecting the three-stage

lifecycle of a question and its answers. These three stages are depicted in figure 3-1.

First, the mobile device user must submit their question to the Sinch system. Next,

Turkers must provide answers to the submitted question. Finally, the user must be

able to view each of these answers on their mobile device, along with the web pages

visited by the Turker who answered it. The mobile Sinch application consists of

both the asking and viewing interfaces, while the answering interface is presented to

Turkers on their desktops.

3.1 Asking a Question

Asking a question is the simplest aspect of the Sinch system. Therefore, the asking

interface was designed for simplicity. Since asking a question is the first step in the

Sinch process, the asking interface is the first thing shown upon opening the mobile

Sinch application. As shown in figure 3-2, the user sees a text box, a microphone

button, and a submit button listed under the “Ask” tab as soon as they open the

application.

When a user clicks in the text box, it brings up the standard Android virtual

keyboard, allowing them to type in their question. If the user instead clicks on the

microphone button, the Android speech input modal dialog box pops up, allowing

23

Figure 3-1: The three major user interfaces of the Sinch system: question asking,
question answering, and answer viewing.

Figure 3-2: The interface for asking a Sinch question with the standard Android
keyboard open.

24

Figure 3-3: The Android speech input modal dialog box in each of its two states:
recording and processing.

the user to record their question. This dialog box is displayed in figure 3-3. Once the

user is done recording, the dialog box processes their input and disappears. The text

box is then automatically populated with the result of the speech-to-text processing.

If some of the words were processed incorrectly, the user can still click in the text

box to bring up the keyboard and correct the mistakes. When the user is satisfied

with the question shown in the text box, they can click on the submit button to send

their question to Turkers for answers. After the button is clicked, the application

switches to the interface that displays incoming answers for the question that was

just submitted.

Design decisions were made about both the “Ask” tab and the microphone button.

Rather than giving the user a longer, more descriptive title, the tab is labeled “Ask”

in large lettering for simplicity and clarity. The microphone button is located in a

prominent, easily accessible location since it is an important option given the nature

of the application. While walking or driving, users would benefit from speech input

25

Figure 3-4: A single Sinch task as seen in the Mechanical Turk task browsing interface.
This is the standard expanded form of a Mechanical Turk task listing.

rather than typing out their questions on the phone’s keyboard.

The behavior of the microphone button was also a key design decision. Rather

than taking the VizWiz approach of recording the audio and letting Turkers listen

to it, the Sinch application immediately executes speech-to-text processing and does

not save the audio. This method allows for simpler code and better space efficiency.

However, it falters in cases where the speech recognition is erroneous but the audio

is easily understandable by a human. In order to remedy this, the text output of the

speech recognition is presented to the user, and they have the ability to record their

question again or edit the text manually before submitting the question.

3.2 Answering a Question

When a mobile device user submits a question to the Sinch system, it is posted as a

task on Mechanical Turk for Turkers to answer. As they browse through tasks using

the Mechanical Turk browsing interface, Turkers will see the Sinch task listed with

the title “Answer 4 quick search queries!” If they click on the task title, the task

listing will expand and present them with the task description: “Provide answers for

these 4 search queries. The answers you provide will be read by someone on a mobile

phone, so please limit each one to 200 words at most. You must use the browser

within the page to find the answer, or else you won’t be paid.” This expanded task

listing is shown in figure 3-4. Turkers must click on the “View a HIT in this group”

link to get to the task page.

26

Figure 3-5: The Sinch Mechanical Turk interface.

As they first view a Sinch task, Turkers will see the web page in figure 3-5 em-

bedded in the Mechanical Turk task window. The task consists of 4 questions, and

the current question number is indicated at the top of the page. Underneath that is

the question itself, displayed in large bold text since it is the most important piece

of information on the page. Next is the text area where the Turker inputs their an-

swer, along with a submit button and instructions: “You must use the browser below

to search for the answer. Please copy and paste the information you find from the

browser.”

The bottom half of the page is occupied by the browser that the Turker must use

to find the answer. It starts off on the Google homepage in order to encourage Turkers

to immediately perform a web search and start looking for the answer. Turkers are

also provided with an address bar so that they can type in a URL to navigate to

any web page they want. As Turkers use the browser, the web pages they visit are

logged by the Sinch system so that they can be returned to the mobile device user

with the answer. In addition, all text selections in the browser are logged so that

27

they can be highlighted in the mobile device’s browser, drawing the user’s attention

to the important text. This is why the instructions encourage Turkers to copy and

paste from the browser.

After a Turker clicks the submit button, a new question appears and the browser

returns to Google. If they click the submit button on their final question, then the

task is automatically submitted on Mechanical Turk and they are returned to the

task browsing screen.

3.3 Viewing Answers

The final stage of the Sinch system is when the mobile device user views the answers

returned by Turkers. The answer viewing interface, outlined in figure 3-6, is a simple

list-based drill-down interface.

Mobile device users can view all of their previously submitted questions by clicking

on the “Your Questions” tab after opening the Sinch application. Under that tab,

they will see a list of all of their questions, sorted chronologically with the most

recently asked on top. This interface is on the top-left of figure 3-6. If a question

has new answers that have not been viewed yet, the number of new answers will be

indicated to the right of the question. For example, in the figure the question “what

is the Stephen king story that stand by me was based on?” has one unviewed answer.

Users can click on a question to drill down into a list of its answers.

The list of answers is on the top-right of figure 3-6. The question is displayed in

yellow on top of the list of answers, which is sorted chronologically by most recently

returned so that users can easily access the newest answers. If there are no answers

yet, the interface in figure 3-7 is shown to the user instead. If users are impatient for

answers, they can press the refresh button to check for new answers to the question.

Otherwise, they can wait for an automatic notification when new answers come in.

The notification appears in the notifications bar at the top of the phone’s screen. In

figure 3-7, a notification is displayed because a new answer was just submitted by a

Turker.

28

Figure 3-6: The four stages of the drill-down interface for viewing answers: list of
questions, list of answers, answer details, and answer web page.

29

Figure 3-7: The answer list interface before any answers have been submitted. A
notification at the top indicates that an answer has just been submitted.

30

By clicking on an answer in the list of answers, users can drill down into an answer

details page, shown at the bottom-left of figure 3-6. The answer details page shows

the full text of the answer in yellow at the top, followed by a list of the web pages

visited by the Turker. The web pages are in reverse order for two reasons. First, it

reflects the ordering of browsing history in all standard browsers. Second, the page(s)

where the Turker found the answer to the question will probably be among the last

pages that they visited, so they will show up closer to the top of the answer details

page. Web pages that the Turker copied and pasted text from are indicated with a

yellow highlighter icon on the right. This gives the mobile device users a better idea

of which web pages are relevant.

Clicking on a web page title opens the web page in a browser window, shown on

the bottom-right of figure 3-6. The web page view shows the web page title in the

top bar and loads the desktop version of the web page, just as the Turker would have

seen it. If the Turker copied and pasted text from the web page, the original text will

be highlighted and the browser will automatically zoom into it so that the user can

easily see the answer text in its original context. In the example shown in the figure,

the answer text, “The Body”, was copied and pasted from the Wikipedia page “Stand

by Me (film)”. The browser automatically highlighted the text in the Wikipedia page

and zoomed into it.

3.4 Design Iteration

The Sinch system design was iterated on three times since the original version. The

first iteration focused on adding new features to the application, while the next two

made the interface more learnable and efficient.

3.4.1 Version 1

In version 1 of Sinch, the question asking interface in the mobile application only

consisted of the input text box and the submit button. Instead of a microphone

button, the speech input was included as a menu option. Users would have to press

31

the “MENU” button on their phones to bring up the menu, and then they would

have to click the “Speech Input” menu item to trigger the speech recognition.

The Mechanical Turk interface was also very similar to the final version. In version

1, the only difference was the instruction text. The copy and paste logging was not

included in the Sinch system yet, so the text omitted the instruction to copy and

paste text from the browser.

The answer viewing interface in the mobile application was lacking in many fea-

tures that are present in the final version. The question list and answer list were

exactly the same, but the answer details page was a bit different. Instead of display-

ing web page titles in the list of visited pages, the URL’s were used. In addition,

there were no highlighter icons, and the default starting web page for all Turkers,

“http://www.google.com/”, was included in the URL list. Upon clicking on a URL,

users were taken to the normal browser, not the modified one that highlighted text

and zoomed in.

3.4.2 Version 2

The two major features added in version 2 were notifications and text highlighting.

Aside from factoring in these new features, the interface did not change.

After using version 1 of the Sinch application, it was apparent that notifications

were essential to the user experience. There is no way to avoid the latency that

Turkers introduce into the Sinch system, so users of the mobile application have no

choice but to wait for an indeterminate amount of time for answers to come back.

In version 1, the only way to check for new answers was by repeatedly pressing the

refresh button on the page that displayed the list of returned answers for a particular

question. In addition, since each answer list corresponds to a single question, it would

only check for new answers to that certain question.

Version 2 solved this problem with notifications. As soon as a new answer was

returned by a Turker, the phone would vibrate, the phone’s notification light would

blink, and a notification would pop up at the top of the phone’s screen. Clicking

the notification would take the user to the Sinch application. The unviewed answer

32

counts were also added to the question list in this version of the application, so that

users would easily be able to tell which questions received new answers after clicking

on the notification.

Another problem with version 1 was the difficulty in finding the answer text within

the provided list of web pages. After opening the pages in the browser, it was often

hard to find where the answer came from, especially when dealing with long, text-

heavy websites like Wikipedia.

This problem was solved by introducing text highlighting. In version 2 of Sinch,

it was assumed that the last text selection made by a Turker was the final answer to

the question, since they would have no reason to select any further text after finding

the answer. Therefore, the final text selection on the last visited web page was logged

for each Mechanical Turk task. In the mobile application, a new button was added to

the answer details page just above the URL list. Clicking on this button opened the

last web page the Turker visited in a modified browser that highlighted the Turker’s

last text selection and zoomed into it.

3.4.3 Version 3

Version 3 focused on tweaking the text highlighting feature and making it more usable.

Instead of just logging the final text selection made by the Turker, version 3 of Sinch

logged all text selections. The changes were motivated by questions like “What are

the birth dates of the starting five players on the Miami Heat?”, for which the answer

might require highlighting multiple text regions. Moreover, the answers might not

all be on the same web page, so the Turker might copy and paste relevant text from

multiple web pages.

This issue was fixed in version 3 by taking into account all text selections that

contributed to the final answer text. Turkers were instructed to copy and paste from

the browser, and once they submitted their final answer, all of the text selections that

were a part of that answer were saved by the Sinch system.

In the mobile Sinch application, the answer details page changed once again. The

button introduced in version 2 that opened the last visited webpage and highlighted

33

the Turker’s last selection was removed entirely. Instead, each of the links in the list

of web pages opened up in the special browser rather than the default browser. If

the web page had any saved text selections in it, they were highlighted in the special

browser. The browser also automatically zoomed into the first of the selections on

the page. Pages that had selections were indicated by a yellow exclamation point in

the web page list so that users would know which pages were relevant to the answer.

The answer details page underwent one other minor change in version 3. After

using version 2, it was apparent that URL’s often did not communicate the content

of the web pages well enough. Instead, the URL’s in the list were replaced by web

page titles, which gave users a better idea of the Turkers’ browsing history.

3.4.4 Version 4

The first two design iterations were a result of self-evaluation of the interface. For

the third and final design iteration, version 3 of the mobile application was given to

users to try out. They were asked to submit a question, wait for answers generated by

Turkers, and view the answers. During this process, they were encouraged to think

aloud as they used the interface. Observations of their behavior led to a few final

design changes.

1. The speech input was undiscoverable. None of the users found the speech

input option in the menu on the question asking page. As mentioned before,

speech input is an essential feature of Sinch, and it must be discoverable. This

led to the decision to include a microphone button located prominently right

next to the input text box.

2. The text highlighting feature was unclear. Users were confused by the

meaning of the yellow exclamation points in the web page list, and it often had

to be explained to them. This was made clearer by using an image of a yellow

highlighter instead of the yellow exclamation point.

3. The listing of the Google web page on the answer details page was

unnecessary. While thinking aloud, a few users complained that it was annoy-

34

ing to always see Google at the end of every list of web pages. This happened

because the browser in the Mechanical Turk task always started at the Google

homepage and it was logged as the first visited web page. The answer details

page was changed so that the web page list omitted the initial Google page.

4. The text highlighting occasionally made text unreadable. The text

highlighting feature set the background of selected text to yellow. However,

some Turkers selected light-colored text, which was unreadable by users when

the background was changed to yellow. This issue was fixed by not only chang-

ing the background color to yellow, but also changing the text color to black.

35

36

Chapter 4

Implementation

The Sinch system has four main components, the database, the mobile application,

the TurKit script, and the Mechanical Turk task. The database is hosted on the MIT

CSAIL MySQL server. It stores all of the questions and answers, including auxiliary

data like Turkers’ visited web pages and text selections. The mobile application is

developed on the Android platform, and it provides users with the means to submit

questions and receive answers. The TurKit script reads the database and posts new

tasks to Mechanical Turk based on how many new answers are needed. Finally, the

Mechanical Turk task presents Turkers with questions from the database and saves

their answers back into the database. These component interactions are summarized

in figure 4-1.

4.1 The Database

The Sinch MySQL database consists of four tables: questions, answers, web pages,

and text selections. Each table stores multiple pieces of information that are critical

to the Sinch system.

37

Figure 4-1: The four major components of the Sinch system architecture.

38

4.1.1 The Questions Table

The questions table stores the questions submitted from the Android application,

along with a unique phone identifier. The unique identifier ensures that when a

phone requests new answers, the server will only return answers to questions asked

from that phone.

4.1.2 The Answers Table

The answers table stores the answers given by Turkers who complete a Sinch Me-

chanical Turk task. In addition, it contains a foreign key mapping each answer to a

question from the questions table.

4.1.3 The Web Pages Table

The web pages table stores all web pages visited by Turkers in the Mechanical Turk

interface. In addition to the web page URL’s, it also stores their titles so that they

can be displayed on the answer details page in the Android application. The index of

the web page in the Turker’s browsing history is stored as well, so that the ordering

can be preserved when displaying the list of web pages to the Android users. The

web pages table has a foreign key mapping each web page to an answer.

4.1.4 The Text Selections Table

The text selections table stores information about each text selection made by Turk-

ers using the browser in the Mechanical Turk interface. The selected text is saved,

accompanied by information about the location of the selection. The XPath of the

DOM nodes where the selection started and ended is stored in the table, as well as the

starting and ending character offsets in each of these nodes. The nodes and offsets

together can uniquely identify the position of the text selection. Each selection is

mapped to a web page using a foreign key.

39

4.2 The Mobile Application

The Sinch mobile application is built on the Android platform, which uses a Java API.

There are three types of Java classes used in the Sinch application: a database class,

a service, and activities. The database class is a Java class that acts as a wrapper

around a SQLite database. The service is a background task that runs even when

the application is not open. It repeatedly polls the Sinch server for new answers.

Activities are classes that represent what users actually see on their screens. Each

different page in the application has its own activity class.

4.2.1 The Database Class

The database class wraps around a SQLite database that is almost identical to the

central Sinch MySQL database. It uses the same four tables: questions, answers, web

pages, and text selections. The class includes methods for data insertion and retrieval

that are used by the service and the activities.

4.2.2 The Service

The service starts up with the application and runs in the background continuously,

even if the application closes or the phone goes into sleep mode. As soon as it is

started, the service begins to periodically request new answers from the main Sinch

database. When a new question is submitted, the service starts polling the server

at 10 second intervals. The rate of polling then backs off exponentially with respect

to the amount of time since the last question was submitted. Each time the service

requests new answers, it sends a GET request to a PHP script running on the MIT

CSAIL web servers, including the unique phone identifier and the unique id of the

last answer received by the phone. The script returns all answers corresponding to

the phone’s id that were submitted after the last answer received by the phone. The

service inserts these new answers, along with their web pages and text selections, into

the application’s database.

When new answers are received, the service issues a notification to the Android

40

operating system using the Android NotificationManager class. The notification ap-

pears in the operating system’s notification bar at the top of the phone’s screen. In

addition, the phone vibrates and its LED notification light starts blinking.

4.2.3 The Activities

The Sinch application includes five different activities, each corresponding to a dif-

ferent page in the application. The activities allow the user to submit a question,

view all of their questions, view all answers to a particular question, view a particular

answer with a list of visited web pages, and view a web page that highlights key text

and zooms into it. As users navigate through the application, different activities come

to the foreground. The application flow shown in figure 4-2 indicates the actions that

trigger activity switches.

Submitting a Question

The question submission activity is the first activity presented to users when they

open the Sinch application. When users submit a question, the activity sends a GET

request to the Sinch PHP server with the question text and the phone’s id, and the

server returns the question’s unique id in the central Sinch database. Once this id

is received, the question submission activity saves the question in the local SQLite

database and switches to the activity for viewing answers to the question.

Viewing Questions

The question viewing activity is activated when the user clicks on the “Your Ques-

tions” tab after opening the application. It extends Android’s built-in ListActivity

class, which allows it to easily display a list corresponding to SQLite database items.

As it loads, the activity makes a call to the database class and populates its list with

all questions in the database in reverse chronological order. If any of the questions

have unviewed answers, the activity displays the number of unviewed answers next

41

Figure 4-2: The five activities in the Sinch Android application.

42

to the corresponding question in the list. When the user clicks on a question, they

are taken to the answer viewing activity.

Viewing Answers

The answer viewing activity is always given a single argument on startup: the unique

id of a question. It makes a call to the database class to get all answers to the question

with the given id. Just like the question viewing activity, it extends ListActivity, and

it populates its list with answers in reverse chronological order. The question text

is added in a large yellow font above the list by adding a HeaderView to the list.

Clicking on an answer triggers a switch to the answer details activity.

Answer Details

The answer details activity receives the unique id of an answer when it is invoked.

It also extends ListActivity, and it populates the list with all of the web pages cor-

responding to the given answer. The list entry for each web page that includes text

selections is accompanied by a yellow highlighter icon. The activity also adds the full

answer text and the string “Web pages used to find this answer:” as HeaderViews

above the list. Clicking on a web page title opens the final activity, the answer web

page.

Answer Web Page

The answer web page activity uses a WebView: an Android view that allows appli-

cations to display web pages. When the activity first starts, it sets the WebView’s

user agent string to “Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.6)

Gecko/20100625 Firefox/3.6.6”. It then loads the given URL and displays the title

at the top of the screen. Behind the title, a progress bar indicates the status of the

loading web page. Once the page is loaded, the activity injects JavaScript code into

the web page. The JavaScript code uses the text selection data from the database

43

to determine the DOM nodes and offsets that begin and end each selection on the

web page. The positions of these DOM nodes in the WebView should be consistent

with the text selection data since the user agent was modified before the page was

loaded. The script then uses the node and offset information to highlight each selec-

tion, changing the text background color to yellow and the text color to black. Once

all of the selections are highlighted, it calculates the positional offset of the first text

selection and zooms into it.

4.3 The TurKit Script

Sinch uses the quikTurkit [10] script, developed for VizWiz, to post new Mechanical

Turk tasks. TurKit is a JavaScript wrapper around the Mechanical Turk API, so

quikTurkit is written completely in JavaScript. The quikTurkit algorithm manages all

of the Sinch Mechanical Turk tasks, posting new ones or removing old ones depending

on how many are needed. It runs in an infinite loop, checking on the tasks at each

iteration.

The goal of quikTurkit is to maintain a certain amount of tasks at all times,

depending on the status of the questions in the Sinch database. The quikTurkit

script sets a desired number of answers for each question; it doesn’t stop posting

tasks until at least three answers are returned for every question. This increases the

chances of receiving a correct answer, since Turkers are not all guaranteed to return

the right answers.

The script queries the Sinch database for the question with the fewest answers so

far. If this number of answers is less than three, quikTurkit sets the desired number

of tasks to three minus the number of answers. Otherwise, the desired number of

tasks is zero, since no new answers are needed.

A multiplier can be applied to the goal value as well, since more tasks will increase

the probability of a Turker picking up a task. Sinch uses a multiplier of three. As an

example, when a new question is submitted, it will have zero answers, so three new

answers will be required. Since the multiplier is three, the desired number of tasks

44

will be nine.

At each iteration of the loop, quikTurkit checks the database of questions and

recalculates this desired number of tasks. If the current number of active tasks is

less than the desired number, then it posts new tasks in order to reach the desired

number. If the current number is greater than the desired number, then it removes

the oldest tasks.

One last optimization that the algorithm provides is the reposting of stale tasks.

If a task has been posted for more than a minute and it has not been picked up by a

Turker, it is removed and replaced with a new one. This helps because most Turkers

sort by newest while browsing for tasks. Once a task is too stale, most Turkers will

never see it again.

4.4 The Mechanical Turk Task

The Sinch Mechanical Turk task consists of two main components: an answer form

and an inline browser. The task itself is a web page that TurKit embeds in the

Mechanical Turk task page as an iFrame. This web page is hosted on the MIT

CSAIL web servers.

The answer form consists of a question number, a question, an answer box, and

a submit button. When the task first loads, an Ajax POST request is sent to a

PHP script, which is also hosted on the MIT CSAIL servers. The script returns the

question in the Sinch database that has the least amount of answers. This question

is presented in the answer form, and the question number is set to 1 since it is the

first question in the task.

When a Turker clicks on the submit button, the page makes another POST request

to the same PHP script. However, it includes the unique id of the question that was

just used, so that the script will return a different question. This ensures that the

Turker will not answer the same question multiple times in the same task. As the

Turker continues to submit answers, the POST requests include a list of all completed

questions, ruling them out as future possibilities. When the fourth and final answer

45

is completed by the Turker, the entire Mechanical Turk task is submitted using the

TurKit library.

The inline browser uses PHProxy, an open-source URL-rewriting proxy built with

PHP. The proxy is embedded in the task page using an iFrame, and JavaScript is

injected into the proxy so that it can log events and communicate with the outer task

page. Every time a new web page is loaded in the proxy, its URL and title are sent to

the outer page, which maintains a list of web pages. In addition, every time the Turker

makes a text selection in the proxy, information about the selection is communicated

to the outer page. This information includes the absolute location paths of the start

and end DOM nodes using only position predicates in abbreviated XPath syntax.

The relevant start and end offsets within those nodes are also included.

When a question is answered, all of this logged information is saved to the Sinch

database through a PHP script. As soon as a Turker presses the submit button,

before the next query is loaded, the page makes an Ajax POST request to the PHP

script. It sends the script the answer text and the entire list of visited web pages.

Before it sends the text selection information, it cross-checks all of the text selections

against the answer text. Text selections that are not included in the answer text are

deemed irrelevant, and they are discarded. All other text selections are sent in the

request and saved to the database.

46

Chapter 5

Evaluation

The effectiveness of the Sinch system hinges upon the validity of four major hypothe-

ses:

1. The latency of Sinch is not significantly greater than the time taken to

find an answer using a mobile device’s browser. The main goal of Sinch

is to deal with the problem of mental focus in a mobile situation. However, the

immediate need for answers is always present. Although Sinch allows users to

submit their questions and immediately turn their attention elsewhere, it still

needs to provide timely answers.

2. An acceptable percentage of Turkers are capable of providing the

correct answer to any given question. Sinch provides multiple answers to

each question, so some wrong answers are acceptable. However, at least one

answer to each question absolutely must be correct.

3. Viewing the browsing history that led to a correct answer increases

confidence in that answer. Each Turker’s browsing history is presented to

users so that they can verify the Turker’s answer. If users blindly trust correct

answers without checking the browsing history, then providing it is useless.

4. Viewing multiple correct answers increases confidence. Another way

that Sinch expects users to verify answers is by comparing them to other an-

47

swers. If users are very confident after receiving the first correct answer, then

providing multiple answers is useless.

These hypotheses were tested in three separate evaluations.

5.1 Evaluating Latency

The first hypothesis was tested before Sinch was implemented in order to determine

the feasibility of the system. If the latency of Turker responses turned out to be too

high, then there would be no point in developing the actual system. The latency was

evaluated by asking Turkers to answer questions and asking people to find answers

to the same questions using a mobile browser.

A corpus of 30 questions was used in this experiment. The difficulty of the ques-

tions varied, and each was classified into one of three difficulty levels:

1. After copying the question text into Google, the answer shows up directly on

the search results page. (e.g. “What song has the lyrics planet earth turns

slowly?”)

2. After copying the question text into Google, finding the answer requires drilling

down into the first web page in the search results list. (e.g. “How do you open

a pomegranate?”)

3. After copying the question text into Google, the answer is neither on the search

results page nor the first web page in the search results list. (e.g. “How many

a cappella groups does mit have?”)

The corpus was generated by coming up with original questions and testing them

until there were 10 of each difficulty level. All 30 questions are listed in table A.1.

5.1.1 Turker Latency

The first half of the evaluation determined the amount of time Turkers took to answer

each question. 24 tasks were posted on Mechanical Turk, and each task consisted of

48

6 questions. Since the Sinch Mechanical Turk interface was not built yet, Turkers

were only shown the question text, two input text boxes, and a submit button. They

were asked to paste their answer into the first text box and the URL of the web page

where they found the answer into the second text box. The amount of time it took

to answer each question was logged.

5.1.2 Mobile Search Latency

The second half of the evaluation determined the amount of time people took to

answer each question using a mobile browser. 10 different users were given an iPod

Touch, and they were instructed on how to use its browser. They were told to use

the browser to find the answers to the questions given to them, and announce that

they were done only when they were fully confident of the answer they found. Each

user was given three questions: one of each difficulty level. The question difficulties

were counterbalanced to account for bias. Users were timed from when they turned

on the iPod Touch until they announced that they were done.

5.1.3 Results

The average search times for each question difficulty level on each platform are sum-

marized in figure 5-1. For the Mechanical Turk tasks, the average search time was

113 seconds and the median was 80. For the iPod Touch, the average time was 101

seconds and the median was 77.

Although these times are very similar, the Mechanical Turk task time does not

reflect the true latency of the operation, since Turkers will not begin answering a new

question immediately after it is submitted. Instead, they would probably be in the

midst of answering another question. The expected time until a Turker finishes their

current question is 50 percent of the time it takes a Turker to fully answer a question.

Therefore, the expected time until an answer is received for a newly asked question

is 150 percent of the time it takes a Turker to answer a question. This pushes the

average time to 169.5 seconds and the median to 120. This is still an acceptable

49

Figure 5-1: Average search times of Turkers and iPod Touch users over the three
question difficulties.

latency, given the high latency of the iPod Touch browsing tasks.

It can also be observed from the graph that Turkers started to do better than the

iPod Touch users as the questions got more difficult. This can be attributed to the

inherent weaknesses of browsing on a mobile device. It probably took the iPod Touch

users more time to find what they were looking for on each web page, and web pages

probably loaded more slowly on the iPod Touch. For the difficult questions, these

effects were magnified by the amount of browsing that was required.

The error bars show a much greater variance for the difficult questions as well.

This was most likely caused by the randomness inherent in difficult web searching.

Slightly different search queries can elicit different lists of search results. In particu-

larly difficult web searches, certain formulations of the search query can yield more

useful results than others, causing people who fail to keep rewording their query until

they get a useful result. The randomness in this repeated rewording can lead to high

variance in search times.

50

5.2 Evaluating Correctness

The second experiment evaluated the second hypothesis: the ability of Turkers to

answer questions correctly. This experiment was carried out after the final version of

the Sinch system was complete, so it also tested the effectiveness of the Mechanical

Turk interface. For this experiment, a new corpus of 24 questions was assembled.

Since the experiment’s focus was testing how well Turkers could answer the types of

questions that would be submitted through Sinch, all of these new questions were

gathered from credible sources. Five of the questions came from ChaCha [3] and

two of the questions came from Yahoo! Answers [7], both online question answering

services. The rest of the questions were taken from formal studies of web searching:

eleven were taken from the study of mobile information needs conducted by Sohn

et al [15] and six were taken from a Google paper that studied search behavior [8].

The 24 questions covered a majority of the categories of mobile information needs

outlined by Sohn et al. Each question, along with its category and source, is listed in

table A.2.

In order to test the limits of Turkers’ answering abilities, some of these new ques-

tions were even more difficult than the questions of difficulty level 3 in the latency

experiment. Questions like “which us president named his child after the child’s

grandfather’s college buddy?” could not be easily answered by copying and pasting

the question into the Google search box. Instead, these questions usually required

multiple search query rewordings in order to find the answer. Each of these questions

was tagged as extremely difficult, and each Turker was given no more than one of

these questions to answer.

5.2.1 Experiment Design

The experiment was deployed on Mechanical Turk using the final version of the Sinch

Mechanical Turk interface. 52 unique Turkers were each given four questions to

answer. The first question of each task was a stock question: “what is the world

record for the fastest mile run?” A stock question was used because Turkers were

51

able to view the first question in the task preview page, before they accepted the

task. Therefore, they might search for the answer to the first question on their own

before accepting the task, which would skew the timing data. Also, they would not

be able to use the proxy browser, so their browsing history would not be tracked. All

data for this first question was discarded.

The other three questions comprised of two normal questions and one extremely

difficult question for each Turker. The position of the difficult question was random-

ized for counterbalancing purposes. For these three questions, the answers, comple-

tion times, and visited web pages were all logged.

5.2.2 Results

Each Turker answered three questions, so their number of correct answers ranged

from 0 to 3. The number of answers that each of the 52 Turkers answered correctly

is depicted in figure 5-2. Since each Turker was given two normal questions and one

difficult question, the majority of Turkers unsurprisingly answered two out of the

three questions correctly. The average number of correct answers was 1.88, which

means about 63 percent of all answers were correct.

The phenomenon of Lazy Turkers [9] is apparent in these results. Lazy Turkers

are Turkers who try to do the minimum possible work in order to get paid. In this

case, the five Turkers who got zero answers correct were all Lazy Turkers. Upon

examination of their answers and web page history, it was apparent that all they did

was search for the exact question text on Google, copy all of the text on the entire

search results page, and paste it into the answer box. Without these Lazy Turkers,

the percentage of correct answers would increase to 70. In order to deal with this

problem in the future, Lazy Turkers could be blacklisted from completing any Sinch

tasks once they are discovered.

The fraction of answers that were correct for each question is shown in figure 5-3.

Each question received between 8 and 10 responses from Turkers, and each question

had at least one correct answer provided. Although most of the questions had a

significant number of correct answers, 4 of them had a success rate of less than 33

52

Figure 5-2: The number of correct answers that each Turker provided.

Figure 5-3: The fraction of answers that were correct for each question. The questions
are shown in abbreviated form; the full questions can be found in appendix A.

53

percent. This suggests that the Sinch application should provide more than 3 different

answers to a single question in certain cases. This could be accomplished by either

setting the desired number of unique answers to a greater value or allowing users to

request more answers to specific questions.

One of the 4 questions with a low success rate suffered from an undetected bug

in the Sinch Mechanical Turk task. The question “how do I get from mit to uno’s

pizza?” required Turkers to return a list of directions. However, the proxy browser

in the Sinch Mechanical Turk task was not able to load Google Maps properly. This

bug hindered Turkers from obtaining the answer to this particular question, and only

1 Turker was able to provide the correct answer. With the bug fixed, questions like

this will hopefully be able to elicit more correct answers.

Aside from measuring correctness, this experiment provided insight into how Turk-

ers used the Sinch Mechanical Turk interface. It was the first time Turkers were able

to use the proxy browser, and all of the visited web pages were logged. Figure 5-4

shows the number of web pages visited by each Turker in order to find each answer,

including the initially provided Google home page. The average number of pages

visited was 4.45 and the median was 3.

The graph is generally decreasing, except for a large spike at 3 and a minor spike

at 5. The large spike at 3 corresponds to Turkers who performed a Google search,

navigated to a web page from the search results, and found the answer on that web

page. The minor spike at 5 corresponds to Turkers who did not find the answer on the

first web page they clicked on, so they went back to the search results page, clicked on

a different search result, and found the answer there. One other notable data point

is the maximum of 33 visited web pages, which shows that some Turkers are willing

to work very long and hard to deliver correct answers. Unfortunately, the Turker

who visited 33 web pages was attempting to answer the driving directions question

and was forced to search for an answer without the use of Google Maps, due to the

undetected bug in the proxy browser.

54

Figure 5-4: The number of web pages visited by Turkers while finding answers.

5.3 Evaluating Confidence

The third and final evaluation tested the last two hypotheses: would viewing the

browsing history that led to an answer or viewing multiple answers to the same

question improve confidence? This evaluation used the same corpus of questions as

the correctness experiment, and it utilized the answers and browsing history generated

by the Turkers who participated in that experiment. This experiment was also run

on Mechanical Turk, placing Turkers in the role of mobile users.

5.3.1 Experiment Design

The experiment was designed to evaluate confidence indirectly. Rather than asking

Turkers to evaluate their own confidence in answers, it put each Turker in a situation

where they had to determine the correct answer to a question and be confident about

it. The Mechanical Turk task was deployed to 40 unique Turkers. In the task, each

Turker was given 5 questions, and for each question they were given a random answer

to that question that was provided by a Turker in the previous experiment. Questions

from the previous experiment with time-dependent answers were omitted, as well as

55

Figure 5-5: The Mechanical Turk task web page for the confidence experiment, shown
after the Turker has already revealed 3 additional answers and expanded 2 web page
lists.

questions that did not receive more than 1 correct answer. The Turker’s task in this

experiment was to determine if the given answer was correct or incorrect. The task

web page is shown in figure 5-5.

The task is presented as a game, where Turkers have to answer questions correctly

to earn money. They are told that they are in a scenario where they have no web

access and they have to determine the answer to a question. They text the question

to some of their friends and wait for answers. They receive the first answer, but they

need to determine if that answer is correct or not. They can look at the list of web

pages that their friend visited to find the answer, and they also have the option of

waiting for their other friends to respond and viewing their answers so that they can

cross-check them against the first answer.

The entire set of 5 questions is timed, and Turkers earn more money the faster

they answer the questions. However, if they get more than one of the five answers

wrong, they make no money. This simulates a real-life situation where a mobile device

56

user needs to obtain a piece of information as soon as possible, but they also need

to be confident that it is correct. Turkers are encouraged to answer quickly because

of the time constraint, but they have to be confident about their answers because of

the penalty for guessing. A timer on the top-right of the task page acts as a constant

reminder that time is ticking.

Each answer is accompanied by a hidden list of web pages. Turkers can click the

“Show visited web pages” link to view the list of web pages. They can click on a

link in the list to open the web page in a new tab. This simulates the behavior of

the Sinch Android application, in which users have to click on an answer to see the

corresponding list of web pages, and they have to click on a web page title to see the

web page.

Every 5 seconds, a new answer is made available to the Turker. This answer is

also randomly chosen from the answers logged in the previous experiment. When

the question first appears, Turkers will see a disabled button that says “See another

friend’s answer” and a message that says “Another friend is searching for the answer.

His answer will be available in a few seconds...” After 5 seconds have elapsed, the

button is enabled and the message says “Your other friend’s answer is ready!” When

the button is clicked, a new answer appears with its own expandable list of web pages,

the button is disabled, and the 5 second timer is reset.

When previewing the task, Turkers are shown an instructions page outlining the

scenario and the incentives for answering the questions quickly and correctly. Upon

completing the 5 questions, they are shown their total score and the amount of time

they took.

5.3.2 Results

For each question, the number of extra answers viewed, the number of web page

lists expanded, and the number of web page links clicked were all logged. This data

is shown in figure 5-6. The average number of extra answers viewed was 0.57, the

average number of web page lists expanded was 0.42, and the average number of web

page links clicked was 0.09.

57

Figure 5-6: The number of new answers viewed, web page lists expanded, and web
page links clicked for each question answered by Turkers in the confidence experiment.

Although these averages are low, a significant number of Turkers performed at

least one action before submitting their answer to a question. For 32 percent of

the questions, the Turker viewed at least one new answer, and for 38 percent of the

questions, the Turker expanded at least one list of web pages. The decision to view

new answers or web page lists depends on both the Turker and the question. Some

Turkers never viewed any new answers or web pages, and for easier questions almost

no Turkers viewed new answers or web pages. Another factor that might have biased

Turkers was the use of the word “friend”, which may have given them extra confidence

in the answers.

Nevertheless, the conclusion that can be drawn from this is that viewing multiple

answers and browsing history improves confidence for certain users and certain ques-

tions. Therefore, these two features of Sinch will not always be utilized, but their

presence is valuable in a non-negligible percentage of situations.

A concern in this experiment was that Turkers might search for answers themselves

in their own browser to improve their confidence rather than viewing more answers

or web page lists in the task. This would defeat the purpose of the experiment,

58

since users would only submit questions to Sinch if they were unwilling to search for

the answers themselves. The data from the correctness experiment showed that the

median time it took Turkers to search for answers in their browser was 96 seconds. Of

all questions answered in the confidence experiment where the Turker did not view

any extra answers or expand any web page lists, only 2 of them took longer than 40

seconds to submit. This shows that the experiment was not significantly biased by

Turkers ignoring the task and searching on their own.

One other interesting piece of data is that Turkers clicked on at least one web

page link for 7 percent of the questions, less than one-fifth of the number of questions

where Turkers expanded at least one web page list. This suggests that just viewing

web page titles is usually enough to convince a user that an answer is correct.

59

60

Chapter 6

Conclusion

Sinch is a mobile application that uses human computation to provide answers to

questions via a desktop web search. By eliminating the need for a mobile web search,

Sinch solves all of the problems with searching in a mobile browser. Turkers return

concise answers that are easily readable on a small screen. Furthermore, when the

Sinch application allows users to view the answer text in its original context on a web

page, it automatically highlights the answer and zooms into it so that the user does

not have to deal with searching through the web page on their small device. The “fat

finger” problem is addressed by allowing speech input for questions, bypassing the

need for the on-screen keyboard. Outsourcing the web search to a Turker on their

desktop allows mobile device users to avoid navigating through multiple pages in their

browser, trying to click on small links with their finger. This web search outsourcing

also fixes the problem of poor network connections. Finally, situational disabilities

are dealt with by allowing speech input and providing concise answers. Users can

quickly speak their question and direct their attention back to the task at hand until

an answer is returned by a Turker.

Sinch utilizes Mechanical Turk to obtain human-generated answers to submitted

questions. Each Sinch Mechanical Turk task entails answering a series of questions

by performing a web search in an embedded browser. The browser embedded in the

task is a URL-rewriting proxy than can track browsing history, text selections, and

other user events. This proxy browser can be used in future Mechanical Turk tasks

61

to assess various internet browsing habits.

Sinch introduces two ways to provide more credibility to human-generated an-

swers: providing multiple answers to the same question and a browsing history for

each answer. Human-generated answers are prone to error, so returning multiple an-

swers to a single question increases the probability that at least one of them is correct.

In addition, users become more confident in an answer when they see similar answers

to back it up. Seeing the browsing history that led to an answer also improves a user’s

confidence in that answer, because they can see the answer in its original context on

a web page.

All of these unique contributions in conjunction make Sinch an innovative question

answering application that overcomes the shortcomings of web searching on a mobile

device.

6.1 Future Work

Many new features can be added to the Sinch system. The next logical step is to

support location-based Sinch questions. All Android phones provide location infor-

mation to applications, so the Sinch application could have an option to include the

user’s location when they submit new questions. This could be especially useful for

questions regarding directions or nearby points of interest. The Mechanical Turk in-

terface could be modified to support this as well. If a location is submitted with a

question, the proxy browser could initially load Google Maps and set a marker at the

Android user’s location, instead of just loading the Google home page.

The Android application could also be modified to support multimodal queries. If

a user comes across an object or a location that they want to identify, the application

could allow them to take a picture with their phone and ask a question about the

picture. The Mechanical Turk interface would have to be modified to display pictures

to Turkers.

Sinch currently only deals with question answering web searches. However, it can

easily be adapted to also deal with another prevalent type of web search: a search for

62

a particular web page. For example, users might want to find the legitimate music

video for a song on YouTube or a website where they can buy obscure comic books.

Since Sinch already logs the web pages that Turkers visit, handling this new type of

search query is just a matter of giving Turkers another method of submitting their

tasks. Instead of forcing Turkers to write in an answer, Turkers could simply navigate

to the desired web page and submit the task. Then the mobile device user would be

able to see the Turker’s browsing history, ending with the user’s desired web page.

Finally, the Sinch application could be ported to the iPhone. Android was chosen

as the developing platform because it supports automatic speech recognition and it

has a Java API. However, if Sinch were to be widely adopted, an iPhone version of

the application would be essential given the large amount of iPhone users.

63

64

Bibliography

[1] Aardvark, 2010. http://www.vark.com/.

[2] Ask.com reverts to its q.& a. origins, 2010.
http://bits.blogs.nytimes.com/2010/07/27/ask-com-reverts-back-

to-its-q-a-origins/.

[3] ChaCha, 2010. http://www.chacha.com/.

[4] Google mobile answers questions and settles bar bets (with sources), 2010.
http://lifehacker.com/5560872/google-mobile-answers-questions-

and-settles-bar-bets-with-sources/.

[5] Mosio, 2010. http://www.mosio.com/.

[6] Wolfram Alpha, 2010. http://www.wolframalpha.com/.

[7] Yahoo! Answers, 2010. http://answers.yahoo.com/.

[8] A. Aula, R. M. Khan, and Z. Guan. How does search behavior change as search
becomes more difficult? In Proc. CHI 2010, pages 35–44. ACM, 2010.

[9] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R.
Karger, D. Crowell, and K. Panovich. Soylent: A word processor with a crowd
inside. In Proc. UIST 2010, To Appear.

[10] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C. Miller, R. Miller,
A. Tatarowicz, B. White, S. White, and T. Yeh. VizWiz: Nearly real-time
answers to visual questions. In Proc. UIST 2010, To Appear.

[11] B. Katz, G. Borchardt, and S. Felshin. Natural language annotations for question
answering. In Proc. FLAIRS 2006, pages 303–306. AAAI, 2006.

[12] G. Little, L. B. Chilton, M. Goldman, and R. Miller. TurKit: Human computa-
tion algorithms on mechanical turk. In Proc. UIST 2010, To Appear.

[13] M. R. Morris and E. Horvitz. SearchTogether: An interface for collaborative web
search. In Proc. UIST 2007, pages 3–12. ACM, 2007.

65

[14] K. Rodden, N. Milic-Frayling, R. Sommerer, and A. Blackwell. Effective web
searching on mobile devices. In Proc. HCI 2003, pages 281–296. British HCI
Group, 2003.

[15] T. Sohn, K. A. Li, W. G. Griswold, and J.D. Hollan. A diary study of mobile
information needs. In Proc. CHI 2008, pages 433–442. ACM, 2008.

66

Appendix A

Questions

67

Table A.1: The 30 questions used in the latency experiment grouped by difficulty
level.

Question Difficulty
“When will halley’s comet next appear?” 1

“What is lady gaga’s real name?” 1
“What song has the lyrics planet earth turns slowly?” 1
“What is the world record for the fastest mile run?” 1

“What is the name of tina fey’s character on 30 rock?” 1
“When was mit founded?” 1

“What does cbs stand for?” 1
“How big is the ipad?” 1

“What is shaq’s shoe size?” 1
“Who is the ceo of coca cola?” 1

“How do you open a pomegranate?” 2
“How do you fill out a check?” 2

“What was the last us city to host the summer olympics?” 2
“What is the weather in cambridge ma?” 2

“When is daylight savings time this year?” 2
“How long did conan o’brien host the tonight show?” 2

“What is the record for the fastest rubik’s cube solve?” 2
“When did the first nintendo system come out?” 2

“Which nba player has won the most championships?” 2
“How many players are on a football team?” 2

“How much does an ice cream sandwich cost?” 3
“How many days were there in the year 1752?” 3

“What is the standard size of a crossword grid?” 3
“How many a cappella groups does mit have?” 3

“Where is the nearest bank of america atm to the corner of
massachusetts ave and newbury st in boston?”

3

“What time does legal sea foods in the prudential center close?” 3
“How much does mistborn book 1 cost on amazon?” 3

“How do you get from mit to harvard square?” 3
“How much does it cost to get 50 gb on dropbox?” 3

“What is the notebook of the week on newegg.com?” 3

68

Table A.2: The 24 questions used in the correctness experiment, including their
categories and sources.

Question Category Source
“How do you beat level 35 of bloons in player pack 2?” Trivia ChaCha

“How many calories are in a chicken club?” Trivia ChaCha
“What does the french part in the song bad romance

mean?”
Trivia ChaCha

“What are the lyrics to loser by beck?” Trivia ChaCha
“What is the name of the iphone app that tells you

what song you are playing when you hold your phone
to the speakers?”

Trivia Google CHI paper

“What is the stephen king story that stand by me was
based on?”

Trivia Google CHI paper

“Who is the athletic director at mater dei high school
in santa ana, california?”

Trivia Google CHI paper

“What time does the boston apple store close?” Business
Hours

Mobile Info paper

“What is the current status of southwest flight 2021?” Travel Mobile Info paper
“What are the ingredients I need to make hot and sour

soup?”
Recipes Mobile Info paper

“What did bob marley die of, and when?” Trivia Mobile Info paper
“What is the phone number for weight watchers?” Phone

Number
Mobile Info paper

“What will the weather be like in cambridge, ma this
weekend?”

Weather Mobile Info paper

“Where is the nearest library or bookstore to mit?” Point of
Interest

Mobile Info paper

“How much does the kindle cost on amazon’s website?” Shopping Mobile Info paper
“How much is a two six of alcohol?” Trivia Yahoo! Answers

“Is acer better than toshiba at making laptops?” Shopping ChaCha
“What is the name of the dave matthews band studio

located outside charlottesville?”
Trivia Google CHI paper

“Which us president named his child after the child’s
grandfather’s college buddy?”

Trivia Google CHI paper

“What are the names of the two prada models who fell
at milan fashion week 2008?”

Trivia Google CHI paper

“Did the los angeles lakers have any free agent
acquisitions this summer?”

Sports Mobile Info paper

“How do I get from mit to uno’s pizza?” Directions Mobile Info paper
“Are inception tickets available tonight at boston

common?”
Movie
Times

Mobile Info paper

“How much does it cost to send a broken xbox 360 to
microsoft for repair without a warranty?”

Trivia Yahoo! Answers

69

