Toward Facilitating Assistance to Students Attempting
Engineering Design Problems

Elena L. Glassman

Ned Gulley

Robert C. Miller

MIT CSAIL The MathWorks, Inc. MIT CSAIL
32 Vassar St. 3 Apple Hill Dr. 32 Vassar St.
Cambridge, MA 02139 USA Natick, MA 01760 USA Cambridge, MA 02139 USA
elg@mit.edu ned.gulley@mathworks.com rcm@mit.edu

ABSTRACT

In engineering design courses, many problems have a spec-
ification that the student’s implementation must meet, but
give the student a large range of freedom for the internal de-
sign of that implementation. There may be several distinct,
correct strategies for solving them, some of which may be
unknown to the teaching staff or intelligent tutor designer.
When a student is pursuing an unrecognized strategy and
begins to struggle, staff may redirect them, costing unneces-
sary work, and automated hint generators may offer unhelp-
ful feedback. We have taken a first step toward discovering
these alternate correct strategies by visualizing many stu-
dent solutions together, using dynamic and static features
of these solutions, so that the teaching staff can understand
the space of correct strategies. This approach has been ap-
plied to two domains: an online Matlab programming chal-
lenge and an undergraduate computer architecture course.
We discuss these initial investigations and pose discussion
questions to the community about potential enhancement
and application of this analysis.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

Keywords

Problem Solving Process, Digital Design, Computer Science
Education, Pattern Recognition

1. INTRODUCTION

In engineering design courses like computer architecture
and programming, problems often have a specification that
the student’s implementation must meet, but give the stu-
dent a large range of freedom for the internal design of that
implementation. These problems may have several differ-
ent but still correct strategies for solving them, some of
which may even be unknown to the teaching staff of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER’13, August 12-14, 2013, San Diego, California, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2243-0/13/08

http://dx.doi.org/10.1145/2493394.2493400 ...$15.00.

course. This raises problems for helping students and giv-
ing feedback. In face-to-face situations, if a teaching assis-
tant doesn’t recognize the student’s strategy, then they may
redirect the student completely, costing them work. In an
intelligent tutor or massively open online course (MOOC),
the automated hint generators may not recognize the unex-
pected strategies, and will generate unhelpful hints.

A first step toward discovering these alternate correct
strategies is visualizing many student solutions together, so
that the teaching staff can understand the space of correct
strategies. We have taken this approach in two domains: an
online Matlab programming challenge and an undergraduate
computer architecture course. We have found that plotting
execution behavior or static features such as parse tree size is
enough, in these initial examples, to separate students’ solu-
tions into clear clusters representing different strategies. In
the Matlab challenge, visualizing code size provides insight
into common strategies as well as successful and unsuccess-
ful outliers. We see these visualizations being mined by the
users themselves to improve their coding skills. In the com-
puter architecture course, this led to better education of the
teaching staff, and as a result, they now ask a simple ques-
tion to identify the student’s approach before trying to help
them.

In this discussion paper, we present these two motivating
examples, consider some of their implications, and propose
a number of questions for discussion at the conference, sum-
marized here and expanded on later in this paper:

e What features are useful for visualizing or automati-
cally clustering engineering design solutions? For pro-
gramming domains, for example, features could in-
clude measures of program complexity, stack depth,
and/or runtime characteristics. For digital logic and
analog circuit domains, features could include graph
metrics and voltage traces on intermediate nodes.

e How can teaching staff be trained to quickly recognize
the strategy of a given student, in order to give tailored
feedback?

e If teaching staff are in short supply (as in a MOOC),
how can peers help each other in a space where there
are multiple good solution strategies? For example,
how can an algorithm running on top of a discussion
forum automatically pair students who need help with
others who successfully used the same strategy? Con-
versely, how can a discussion forum-based algorithm
broaden students’ understanding by exposing them to
students with different strategies?

e If peer help is not feasible, then how can we provide au-
tomated help based on strategy recognition in a design
space where multiple correct strategies are possible?

2. RELATED WORK

Courses deployed on MOOC platforms, such as edX and
Coursera, include introductory programming, an introduc-
tion to electrical circuits, and human-computer interface
classes. These classes each require some level of design.

Visualization and automatic recognition of the multiple
ways by which a student can approach a solution is an area of
active research. Kiesmueller et al. [4] attempted to recognize
strategies at a very high level, which are not specific to the
challenge at hand. Example high-level problem-independent
strategies were a top-down or bottom-up programming style.
Helminen et al. [3] introduced novel interactive graphs for
examining the problem solving process of students working
on small programming-like problems. However, problems
with multiple solutions were outside the scope of their in-
vestigation.

Tackling problems with multiple solutions directly, Taher-
khani et al. [6] demonstrated the practicality of differenti-
ating between multiple solutions, i.e., different sorting al-
gorithms, in students’ solutions to a particular engineering
design problem using a supervised machine learning method.

Weld et al. [7] speculate about crowd-powered personal-
ization in the context of online education. Specifically, they
mention student competency measures as a way to inform
peer-pairing and resource recommendations.

Singh et al. [5] are pushing the state of the art of auto-
mated feedback for introductory programming assignments,
like those assigned in 6.00x. However, their software is cur-
rently only differentiating between solutions based on their
input-output characteristics, not the strategy used. For ex-
ample, this system cannot currently differentiate between
two different sorting algorithms. If there are common dead-
ends that have been identified by looking at incorrect stu-
dent solutions to a particular problem, by hand, this system
can identify that a student is very close to a known dead-end
approach, but it cannot identify which functionally equiva-
lent variant of a correct solution a student is approaching.

Our work is relevant to complex design tasks with mul-
tiple correct solutions, so it may be of particular interest
to teaching staff with a constructivist perspective. Such
staff members may be attempting to elicit each student’s
envisioned solution strategy, and then help them toward a
working solution that employs that strategy [1]. The algo-
rithms, tools, visualizations, and resulting insights from this
and future work are intended to augment this constructivist
approach to teaching.

3. VISUALIZING SUBMISSIONS TO AN ON-

LINE PROGRAMMING GAME

The MathWorks’ Cody* is an informal learning environ-
ment that does not have associated teaching staff or the over-
arching structure of a course. However, it can still support
recognition of multiple correct solutions. Cody is an online
programming game based on the MATLAB programming
language, which poses algorithmic design problems on the
web. The public is welcome to submit solutions in MATLAB

'mathworks . com/matlabcentral/cody

code. Given the internal range of freedom for implementa-
tion, these fit our definition of engineering design problems.

3.1 Cody Background

Cody, developed for the MATLAB language, was origi-
nally conceived as a replacement for an older MATLAB on-
line programming competition. This preceding competition
consisted of one difficult programming challenge offered to
the community every six months. This contest was popular,
but players consistently asked for a competition that could
be played more frequently. We met this request by offering
a large number of smaller problems that could be solved at
any time. And, crucially, we allowed the community to add
their own problems so the problem pool would not stagnate.

The primary motivation for Cody (and its predecessor)
is to make it fun to learn to code in MATLAB. Much of
the learning comes from examining solutions provided by
other people to the problem that you just solved. There’s a
marvelous teachable moment there where people say, “That
never would have occurred to me, but I can see how it’s
useful...” Cody’s solution map facilitates this process.

3.2 Data Collection

Cody originally launched in January of 2012 and has grown
steadily since that date. There are currently more than
13,000 registered players. Cody launched with 96 problems
that were created by the Cody team. Since that time, mem-
bers of the Cody community have added another 894 prob-
lems. To these 1000 or so problems, players have submitted
some 218,000 solutions.

3.3 Solution Maps

Solutions submitted to Cody are immediately evaluated
and scored. Once the code is validated with a suite of input-
output constraints, it can be displayed on a solution map.
Two examples of solution maps are shown in Figures 1a and
1b.

The solution map plots solutions as points against two
axes: order of arrival (on the horizontal axis) and code size
(on the vertical axis). Correct answers are green circles.
Incorrect answers are red x’s. We define code size as the
number of nodes in the parse tree of the solution. Despite
the simplicity of this metric, code size can provide quick and
valuable insight when assessing large numbers of solutions.
An instructor is likely to be interested in common responses,
both correct and incorrect, as well as extreme outliers, and
the solution map reveals these and other interesting pat-
terns.

For example, Figure la shows a solution map for a prob-
lem which has a single obvious solution. Almost all the so-
lutions are correct and exactly the same size. This presents
as a great many correct solutions in a single line, packed
so close together that they blur into a single rail of green
circles.

When a problem has two common solutions, we might
see two rails. Figure 1b shows the solution map for the
Triangular Number problem. The computationally efficient
solution for the nth triangular number is n(n + 1)/2. A
less efficient but simple MATLAB solution is to create and
then sum the series from 1 to n. These solutions are the two
rails evident in this solution map for the Triangular Number
problem.

Size

Size

140 -
o '
. Il ncomect
112 < ; Il Correct
i
. Il L==ding
B4 - '
i
i
i
% - i
i
i
i
2 : ®
»” ° o ° o x
o] L
Q m 154 L £ =
Order of Arrival
(a) The solution map for a problem which has a single obvious solution.
Bl ncomect
Il Corect
®» HEl .ssding

200 00 00 800 1000

Order of Arrival

(b) The solution map for a problem which has two common solutions.

Figure 1: Solution map examples. The leading solution is the earliest, smallest correct solution.

4. PRELIMINARY INVESTIGATION OF AN
UNDERGRADUATE LAB ASSIGNMENT

Our second example comes from an undergraduate intro-
duction to computer architecture taught in a computer sci-
ence department at a large engineering school. Roughly two
hundred students, mostly sophomores, enroll per semester.

In this course, students complete labs that span a variety
of computer architecture-related design challenges. Students
begin by designing CMOS gates at the transistor level and
eventually implement a simulated RISC processor at the dig-
ital gate level. As an optional design project, students can
optimize their processor with respect to a metric combining
circuit size and speed. To complete the design component of
each lab, the student first runs a staff-provided suite of tests
on their solution. If the student’s solution passes all the
tests, it is uploaded to a server associated with the course,
for safekeeping.

4.1 The Turing Machine Lab

One mid-semester lab assignment requires that students
write the state-transition rules for a Turing machine that
halts on the symbol ‘1’ if the input is a string of matched
parentheses and halts on a ‘0’ otherwise. Each student de-
signs their own symbol library and state names for the finite
state machine portion of their Turing machine, and lists be-
havior specifications. Each line in the behavioral specifica-
tion boils down to the following: if you’re in state X and you
read symbol Y on the tape, overwrite symbol Y with sym-
bol Z, move the tape-reader in direction W, and transition
to state Q.

The Turing machine lab is difficult to help students with
because many sets of state-transition rules behave identi-
cally, given the same input tape of parentheses. Even after
looking at hundreds of Turing machines, which all give the
same correct final answers, there is very little a human can
discern simply by looking at the students’ code. The same
is true even after translating these textual statements into
a diagram of state transitions.

Each staff member is encouraged to complete the lab on
their own before counseling students. Staff members were
aware of the solution they each found, and yet were not
aware that there were two mutually exclusive common solu-
tions. At least one staff member admitted steering students
away from solutions they did not recognize, but in retrospect
may have indeed been valid solutions.

4.2 Data Collection

While conducting in-person check-off interviews for the
Turing machine lab, we noticed that the dynamic behavior
of the Turing machines had some recurring patterns. To
investigate further, we visualized this dynamic behavior for
all students’ two-state Turing machines submitted during
the Spring 2011 semester. Of the 194 processed from a single
semester, we restricted ourselves to the 148 two-state Turing
machines to eliminate confounding factors.

4.3 Visually Representing Dynamic Behavior
for Strategy Identification

In order to visualize this dynamic behavior, we ran all the
two-state machines on the same test tape containing a string
of open and closed parentheses. The movement of the tape-
reading head across this input was logged in coordinates
relative to the common starting point, at the left end of

the test tape, and displayed along the vertical axis. The
horizontal axis represents the number of steps taken by the
Turing machine on its way to completing the task. These
discrete steps are analogous to time.

The majority (88%) of the solutions employed one of two
mutually exclusive strategies. These strategies were identi-
fied by visual inspection of the movement of many Turing
machines across a common input tape. Figure 2 shows their
locations on the common input tape over time, segregated
by strategy into Figures 2b and 2c. These two strategies for
determining whether or not the tape’s string of parentheses
is balanced are (1) matching the innermost open parenthesis
with the innermost closed parenthesis and (2) matching the
nt" open parenthesis with the n‘® closed parenthesis, as is
the case in standard mathematical notation. The remaining
12% of solutions included less common strategies. At least
two strategies in this group are known to pass the provided,
fixed test suite but are wrong, because they cannot handle
an arbitrary depth of nested parentheses.

4.4 Observed Benefits for Teacher-Student In-
teractions

The benefits of this additional knowledge have already
been felt. We continue to guide students through this lab,
and now ask struggling students a simple question first, to
determine their solution strategy. Are they matching the
innermost open paren with the innermost closed paren or
matching the n'® open paren with the n'* closed paren?
This typically starts off a strategy-level discussion, which
helps the author suggest edits that preserve the student’s
already chosen, valid strategy. Common strategy identifi-
cation also allows the author to quickly recognize notable,
novel alternative solutions, which have occasionally appeared
in the course of talking to hundreds of students.

S. DISCUSSION

The questions that drive our investigations have developed
concurrently with the presented examples. In this section we
will revisit these questions and discuss potential future work
for answering them.

What features are useful for visualizing engineering design
solutions? It is not yet clear what features will prove most
generalizable across domains for differentiating between stra-
tegies. Measures of program complexity, stack depth, and
runtime characteristics, along with features of graphs rep-
resenting component connectivity may each be necessary in
some engineering design domains. It is therefore possible
that teaching staff will need to be supported by software
that facilitates interactive data visualization. By plotting
many solutions on coordinate axes described by different
subsets of these features, teachers may be able to find the
feature subsets by which solutions cluster by strategy.

Some of these features may need to be designed specifi-
cally for distinguishing between partial solutions. As of the
Spring 2013 term, the course software now saves complete
snapshots of student solutions-in-progress whenever a stu-
dent saves or runs tests. Over the course of these snapshots,
each solution-in-progress evolves into a complete solution
employing one of possibly several distinct, correct strategies.
Informative features of partial solutions would enable su-
pervised machine learning algorithms to successfully predict
which strategy a particular solution-in-progress will evolve
toward.

2 |-110 |1 |2 |3 |4 |5 |6 |7 (8 |9 [10{11(12]13|14|16

(a) Tape on which all 148 two-state Turing machines were tested, and the numbering system by which locations along the test tape are

AR VA
LAAVA

—
(62
1

—_
(@)

-

&

o

1 1 1 1

20 40 60 80 100 120 140
i™ Step of Turing Machine

(b) Strategy A Turing machines: those which paired inner sets of open and closed parentheses, as is standard in mathematical notation.
(73 out of 148 Turing machines)

Turing Machine Location on Tape
(&)

|
(&)
o

o 14
o
(3]
=12
c
(@]
§ 10
g
S 8
—
2 6
£
8 4
=
2 2
E
O 1 1 1 1 1 1 1 J

0 10 20 30 40 50 60 70 80
i™ Step of Turing Machine

(c) Strategy B Turing machines: those which paired the first open with the first closed parenthesis, the second open with the second
closed parenthesis, etc. (58 out of 148 Turing machines)

Figure 2: The two most common strategies for a two-state Turing machine to determine if a string of parentheses is balanced.
Figures 2b and 2c show tape head position over time on the tape illustrated in Fig. 2a. The bold trajectories represent
particularly clean examples.

It is an open question as to how much a student’s strategy
can be inferred from a partial solution. However, if common
strategies have already been identified from analysis of pre-
vious students’ solutions, a teacher could hand-write a mul-
tiple choice question or two inquiring at a high level about
the strategy of the student.

If teaching staff are in short supply (as in a MOOC), how
can peers help each other in a space where there are multiple
good solution strategies? For students on campus waiting in
a long queue for help from a lab assistant or as one of poten-
tially tens or hundreds of thousands of other online students,
it may be helpful to pair a struggling student with (1) a fel-
low student facing the same challenge or (2) a student who
has already finished the assignment. Peer-to-peer collabora-
tion or tutoring can be a powerful way to scale up to massive
virtual classrooms without proportionally increasing staff.
Students who participate in peer collaboration and tutoring
on the teaching side may benefit as much or more than those
whose expertise is not yet as well-developed.

An open question in this context is how to best pair stu-
dents based on identified strategies. Students who have mas-
tered one strategy may be most beneficial to struggling stu-
dents pursuing the same. Consider a stellar student who has
sufficiently mastered the material and already implemented
or helped implement one or more solutions using the same
strategy. This stellar student may acquire an enhanced un-
derstanding of the trade-offs of different strategies if he or
she is directed to help a struggling student pursue an alter-
native strategy.

If peer help is not feasible, then how can we provide au-
tomated help based on strategy recognition in a design space
where multiple correct strategies are possible? Consider a
situation in which a student’s successive partial solutions
appear to be converging on a particular cluster of solutions
which all use a particular strategy. If the student’s par-
tial solutions veer away from that cluster, the student could
be trailblazing and creating a solution that reflects a novel
strategy. If students ask for a hint, perhaps one form of
automated assistance would be to reset them to a snapshot
from a point just prior to their departure from the estab-
lished path toward one of several correct solutions. If stu-
dents cannot generate alternatives to the strategy they tried
and failed to implement, additional assistance might come
in the form of suggested additions, based on similar com-
plete solutions and solutions-in-progress associated with an
established correct strategy.

In a recent semester of this same undergraduate computer
architecture course, a student discovered and published on
the course forum a processor optimization which was un-
known to the teaching staff and adopted by many fellow stu-
dents. The staff helped students implement this trailblazer’s
design. These rare students establish new solution strategies
within the course. We hope that the interventions devel-
oped in our future work allow rather than dissuade students
from creative, novel directions. Improvements to algorithms
taught at the undergraduate level are still being published.
For example, a new sorting algorithm, the Library Sort [2],
was published in 2006. Students will continue to uncover
new strategies to solve classic problems, and the challenge
to teachers and supporting software is responding appropri-
ately to unique solution strategies that may originate with
students.

6. ACKNOWLEDGMENTS

Leslie Kaelbling and Chris Terman, Professors of EECS at
MIT, and Martin Glassman, Principal Systems Engineer at
BAE Systems, provided valuable comments, ideas, and assis-
tance. This material is based, in part, upon work supported
by the National Science Foundation Graduate Research Fel-
lowship under Grant No. 1122374.

7. REFERENCES

[1] M. Ben-Ari. Constructivism in computer science
education. SIGCSE Bull., 30(1):257-261, Mar. 1998.

[2] M. A. Bender, M. Farach-Colton, and M. A. Mosteiro.
Insertion sort is o(n log n). Theory Comput. Syst.,
39(3):391-397, 2006.

[3] J. Helminen, P. Ihantola, V. Karavirta, and L. Malmi.
How do students solve parsons programming problems?
an analysis of interaction traces. In Proceedings of the
Ninth Annual International Conference on
International Computing Education Research, ICER
'12, pages 119-126, New York, NY, USA, 2012. ACM.

[4] U. Kiesmueller, S. Sossalla, T. Brinda, and

K. Riedhammer. Online identification of learner

problem solving strategies using pattern recognition

methods. In Proceedings of the Fifteenth Annual

Conference on Innovation and Technology in Computer

Science Education, ITiICSE ’10, pages 274-278, New

York, NY, USA, 2010. ACM.

R. Singh, S. Gulwani, and A. Solar-Lezama. Automated

feedback generation for introductory programming

assignments. In PLDI, 2013.

[6] A. Taherkhani, A. Korhonen, and L. Malmi. Automatic
recognition of students’ sorting algorithm
implementations in a data structures and algorithms
course. In Proceedings of the 12th Koli Calling
International Conference on Computing Education
Research, pages 83-92. ACM, 2012.

[7] D. Weld, E. Adar, L. Chilton, R. Hoffmann, E. Horvitz,
M. Koch, J. Landay, C. Lin, and Mausam. Personalized
online education — a crowdsourcing challenge. In
Proceedings of the 4th Human Computation Workshop
(HCOMP ’12) at AAAI 2012.

5

