
Why We Customize the Web

Lydia B. Chilton, Robert C. Miller, Greg Little, Chen-Hsiang Yu
MIT CSAIL

Traditionally, customization has been associated with desktop applications. Many desktop
applications have customizable menus and tool bars, with options that the user can pick
from to customize their environment. End user programming is a more powerful kind of
customization tool, which exists in some desktop applications in the form of macros and
scripting languages, and on the web in various incarnations. On the web, customizable
menus are rare; end user programming seems to be the main form of customization.

In order to make generic software more efficient and usable, end users should be able to
customize it to fit their work habits and preferences. Unfortunately, that has been a limited
reality for desktop applications. In desktop applications, it's hard to know what can be
changed, how to select only specific parts of an interface to keep, and how to incorporate
data and functionality from other applications. Yet the web has offered new possibilities in
the realm of customization. Web page components are easy to identify, and almost any
component can be altered in behavior, style or placement.

The modern web now offers not only a wealth of information and media but also
applications. The combination of private data, public data and desktop-quality applications
has created a powerful computing environment. As people use the web to shop, plan
events, consume media, manage their personal information and much more, they want to
customize the sites they use to shape around their preferred work flow. Fortunately, the
openness and flexibility of the web platform enables customizations that would not have
been possible on the desktop.

This chapter looks at part of the landscape of web customization, particularly around the
Mozilla Firefox web browser. We use customization in a broad sense to refer to
modifications to a web site that are not hosted on the site itself. Customizations may
automate interaction with the site -- clicking links, filling in forms, and extracting data
automatically. They may change the site's appearance by adding, removing, or rearranging
page components. Or they may combine a site with other web sites, commonly called a
mashup.

Like most of this book, this chapter focuses on customizations hosted by the web browser,
at the risk of glossing over the rich world of mashups and web services hosted out in the
web. Examples include specific mashups like the classic HousingMaps1 mashup of craigslist
and Google Maps, as well as programming systems like Yahoo Pipes2, Google Mashup
Editor3, and Microsoft Popfly4. Although some of these web-hosted customizations may be
aimed at or created by end users, browser-hosted customizations are more general, and
this is where we will focus our main attention.

1. housingmaps.com
2. pipes.yahoo.com
3. code.google.com/gme
4. popfly.com



The rest of this chapter is organized as follows. We start by looking back at previous
research on desktop customization, which uncovered motivations and practices that
continue to be true on the web, and on web mashups. We then survey some examples of
customizations for Firefox, drawing from public repositories of Firefox extensions,
Greasemonkey, Chickenfoot, and CoScripter scripts. We follow with a discussion of
motivations for customization revealed by these examples, some of them unique to the web
platform.

Related Work

Early research on customization was exclusively on desktop customization. In many ways,
web customization achieves the same basic goals as traditional customization, making an
interface better suit personal needs. Yet the web's unique platform and culture bring about
several differences from traditional customization. Some of the barriers to desktop
customization aren't as prevalent on the web; the types of changes that user make on the
web are different, and the customization on the web is driven by a wider set of the
motivations.

In a study of the WordPerfect word processor for Windows, Page et al.5 describe five types
of customization found on the desktop. Most common was (1) setting general preferences;
then (2) using or writing macros to enhance functionality of the application; (3) granting
easier access to functionality, typically by customizing the toolbar with a shortcut; (4)
"changing which interface tools were displayed," for example, showing or hiding the Ruler
Bar; and (5) changing the visual appearance of the application. These categories are
certainly relevant to web customization. In fact, the customizations encouraged by end
user programming are most strongly associated with enhancing functionality and granting
easier assess to existing functionality.

Wendy Mackay studied6 a community of customization around a shared software
environment, MIT's Project Athena, and identified four classes of reasons that users
customized. The top technological reason cited was that "something broke," so that the
customization was actually a patch. The top individual factors cited were first that the user
noticed they were doing something repetitively and second that something was "getting
annoying." All of these reasons can be found in web customization as well.

In the same study, Mackay describes barriers to customization reported by users. The most
reported barrier overall was lack of time, but the chief technical reasons were that it was
simply too difficult and that the application programming interfaces (APIs) were poor. End
user programming systems for the web have endeavored to ease the technical burden.
Additionally, customizable web sites all use the same technology, and have the same
structure -- the Document Object Model of HTML, modifiable with JavaScript -- which curbs
the basic reliance on APIs.

Mackay defines customization as changes users can make without writing code. In this
chapter, we regard end user programming as one kind of customization. Some end user
web programming systems don't require writing code at all (notably CoScripter), but many
rely on the user to do at least some coding. The goal of end user programming is to lower
the threshold of traditional programming and thus alleviate some of the technical barriers to
customization.

5. S.R. Page, T.J. Johnsgard, U.Albert, C.D. Allen. "User customization of a word
processor." CHI '96.
6. Wendy Mackay. "Triggers and barriers to customizing software." CHI '91.



In a study of users' sharing customizations stored in text files7 Mackay highlights how
important it is that authors of customizations share their work with nonprogrammers who
want customizations but don't know how to write them. The same culture of sharing is just
as important and widely prevalent on the web. Mackay describes a group of "translators"
who introduce the non-programmers to existing customizations. The web has its own
channels for distributing customizations that rely not just on repositories of customizations
(like blogs and wikis) but also on personal interactions (email, forums, comments, and so
on).

Mackay recommends that users "want to customize patterns of behavior rather than lists of
features." Desktop applications today still concentrate on customizing lists of features. End
user programming on the web, however, leans heavily toward what Mackay recommends --
adding features, combining features, and streamlining the process of completing tasks.

MacLean et al.'s classic end-user programming system Buttons8 is a customization tool built
around macros that can be recorded and replayed by pressing a single button. MacLean et
al. point out that there is a "gentle slope" of customizability where technical inclination
governs ability and willingness to customize. Web customization exhibits a similar slope. At
the very basic level, users have to know about and trust browser extensions in order to
even run browser-hosted customizations. To start writing customizations, a user must
become familiar with an end-user programming tool. At the programming level, it may be
necessary for customizers to know about the HTML DOM, JavaScript, and browser APIs such
as Firefox's XPCOM components.

More recently, researchers have studied practices of customization on the web, particularly
mashup creation and scripting. Zang et al.9 found through surveys of mashup developers
that mapping sites (specifically Google Maps and Yahoo Maps) were among the most
popular to mash up with other sites, and that many programming obstacles still exist to for
mashup creation. Wong & Hong10 surveyed mashup artifacts rather than the people who
created them, examining two public directories of web-hosted mashups (ProgrammableWeb
and MashupAwards.com) in order to discover interesting characteristics and dimensions for
classifying existing mashups. Although aggregation of data from multiple sites was a very
common feature, Wong & Hong also found mashups designed to personalize a site, filter its
contents, or present its data using an alternative interface. This chapter takes a similar
approach to Wong & Hong, surveying customizations in four public repositories, but focusing
on browser-hosted customizations.

The CoScripter system in particular has been the subject of two studies of web
customization practice. Leshed et al.11 studied how CoScripter was used by internal IBM
users, while Bogart et al.12 looked at much wider use on the web after CoScripter was
released to the public. Some of findings from these two studies will be cited in the next
section.

7. Wendy Mackay, "Patterns of sharing customizable software." CSCW '90.
8. A. Maclean, K. Carter, L. Lövstrand, T. Moran. "User-tailorable systems: pressing the
issues with buttons." CHI '90.
9. q.v. Zang et al. chapter in this book
10. Wong & Hong, "What do we 'mashup' when we make mashups? ", WEUSE 200.
11. G. Leshed, E. Haber, T. Matthews, T. Lau. "CoScripter: Automating and sharing how-to
knowledge in the enterprise." CHI 2008, 1719-1728.
12. C. Bogart, M. Burnett, A. Cypher, C. Scaffidi. "End-User Programming in the Wild: A
Field Study of CoScripter Scripts," VL/HCC 2008.



Examples of Web Customization

We now turn to a brief, informal survey of examples of web customization found on today's
web. These examples are mostly drawn from the public repositories of four web
customization systems, all designed for the Mozilla Firefox web browser. Firefox
extensions13 add new user interface elements and functionality to the browser, generally
using Javascript and HTML or XUL (Firefox's user interface language). Greasemonkey14

allows user-provided Javascript code to be injected into a web page and customize the way
it looks or acts. Chickenfoot15 is a Javascript programming environment embedded as a
sidebar in the browser, with a command library that makes it easier to customize and
automate a web page without understanding the internal structure of the web page. Finally,
CoScripter16 allows an end user to record a browsing script (a sequence of button or link
clicks and form fill-in actions) and replay it to automate interaction with the browser, using
a natural-language-like representation for the recorded script so that knowledge of a
programming language like Javascript is not required.

Each of these systems has a public repository of examples, mostly written by users (not the
system developers). Firefox extensions are hosted by a Mozilla web site17. Greasemonkey
has a public scripts wiki18, as do Chickenfoot19 and CoScripter20. CoScripter is worth
special mention here, because all CoScripter scripts are stored on the wiki automatically.
The user can choose to make a script public or private, but no special effort is required to
publish a script to the site, and the developers of CoScripter have been able to study both
public and private scripts.

Other customization techniques exist. Bookmarklets are small chunks of Javascript encoded
into a javascript: URL, which can be invoked when a web page is showing to change how
that page looks and acts. Bookmarklets have the advantage of being supported by all
major browsers (assuming the Javascript code in the bookmarklet is written portably).
Other browser-specific systems include User Javascript21 for the Opera browser, which is
similar to Greasemonkey, and Browser Helper Objects22 for Internet Explorer, which are
similar to Firefox extensions.

Since this survey focuses mainly on customizations for Firefox that users have chosen to
publish in a common repository, it may not reflect all the ways that web customization is
being used in the wild, but these examples show at least some of the variety, breadth, and
in particular varying motivations that drive users to customize the web.

The rest of this section describes some interesting dimensions of web customizations:
• the kinds of sites customized;
• the nature of the customization (shortcut, simplification, mashup, etc.);
• generic customizations (for any web site) vs. site-specific ones;
• customizations for one-shot tasks vs. repeated use;

13. developer.mozilla.org/en/Extensions
14. greasemonkey.mozdev.org
15. q.v. Chickenfoot chapter in this book
16. q.v. CoScripter chapter
17. addons.mozilla.org
18. userscripts.org
19. uid.csail.mit.edu/chickenfoot/scripts
20. coscripter.research.ibm.com
21. www.opera.com/browser/tutorials/userjs
22. msdn.microsoft.com/en-us/library/bb250436.aspx



• the creator of the customization (not necessarily a user of the site);
• the relationship between the customization and the targeted site (sometimes

breaking the rules, sometimes collaborative).

Kinds of web sites customized. Many scripts target web sites for personal information
management (PIM), such as email, calendars, and todo lists, probably because users of
these sites spend much time using them. GMail alone has spawned a rich community of
customizers. One popular Firefox extension, Better GMail, bundles up several
Greasemonkey scripts that change how GMail works, among them keyboard macros, saved
searches, and forcing use of a secure connection. Folders4GMail is a Greasemonkey script
that allows GMail's flat labels to be organized into a hierarchy of folders. Google Account
Multi-Login speeds up switching between different GMail accounts with different usernames
and passwords.

Other customizations target media sites, particularly for video and photo sharing. Since
YouTube is widely used for posting and watching music videos, YouTube Lyrics adds a box
to video pages that searches for and displays the lyrics to the song. Other scripts and
extensions support downloading videos from YouTube, and combining IMDb (a movie
database) with Bittorrent (a popular technology for downloading movies online). Better
Flickr bundles up several scripts that enhance the usability of the Flickr photo-sharing site,
including a photo magnifier, shortcuts for replying to other users' comments, and a rich text
editor for comments. GMiF (embeds Google Map in Flickr page)

A third major category of customized sites are search engines. The GooglePreview
extension inserts webpage thumbnails into Google and Yahoo search results, and
SurfCanyon reranks search results (Google, Yahoo, CraigsList, LexisNexis) and filters out
undesirable sites.

PIM, media, and search may be important areas of customization for two reasons: first,
because users' interaction with these sites may be highly idiosyncratic and personalized,
and second, because the developers of these sites sometimes have their hands tied for legal
or practical reasons, preventing them from implementing features that end users may
demand. Customization is thus forced to pick up the slack. This idea will be elaborated in
more detail later in the chapter.

Customization is certainly not limited to sites in these areas, however, and it seems likely
that the tail of the distribution is long23.

Kind of customization. Many scripts are shortcuts, making a frequent or repeated task in
the site more efficient. A classic example of a shortcut is GMail Delete button, a
Greasemonkey script that added a Delete button to GMail's interface. Deleting a message
was already possible in GMail by opening the More Options pulldown menu and selecting
Trash This Message. This script simply makes the function accessible with one click.
Another simple example in this category is a script that changes links to GMail and Google
Calendar so that they simply switch to an existing GMail or Google Calendar tab rather than
opening a new one (initially prototyped in Chickenfoot, and subsequently a popular Firefox
extension). Other notable Chickenfoot examples include a script that add a recently-
viewed-pages box to MediaWiki, and one that forces all Youtube videos viewed into high-
quality mode whenever available. Many CoScripter scripts surveyed by their developers
also fall into this category. Since CoScripter was widely deployed and used within IBM

23. D. F. Huynh, R. C. Miller, and D. Karger. "Exhibit: Lightweight Structured Data
Publishing." WWW 2007, pp. 737-746.

https://addons.mozilla.org/en-US/firefox/addon/4866
http://userscripts.org/scripts/show/8810%5C
http://userscripts.org/scripts/show/16341
http://userscripts.org/scripts/show/16341
http://userscripts.org/scripts/show/22569
https://addons.mozilla.org/en-US/firefox/addon/8010
https://addons.mozilla.org/en-US/firefox/addon/8010
https://addons.mozilla.org/en-US/firefox/addon/2512
https://addons.mozilla.org/en-US/firefox/addon/189
http://www.surfcanyon.com/
http://userscripts.org/scripts/show/1345


before being made public, Bogart et al. found that many popular shortcuts automate
internal IBM systems, such as voicemail, telephony, and business processes.

A particular kind of shortcut is automatic form fill-in, which fills in a form with defaults.
Major web browsers already provide this ability for login forms, including Firefox, but
generally don't have good support for users who must manage multiple accounts per site.
The Google Account Multi-Login mentioned previously is one script for this problem.
Another is a Chickenfoot script for the Mailman mailing list system, which automatically
selects the right password to use for administering a mailing list. For general form fill-in,
several Firefox extensions exist, the most widely-installed probably being Google Toolbar.
Many CoScripter scripts and Chickenfoot scripts also do form fill-in for specific sites and
purposes, under more control by the user than a generic extension.

Another category of customization is simplification, which reduce clutter or distraction or
eliminate unnecessary features. One Chickenfoot script simplifies iGoogle (Google's home
page portal) by removing the logo and search box, which otherwise occupy half the screen.
Another script used by one of the authors on GMail hides the fact that there are unread
messages in the Drafts folder (turning off the boldface and removing the unread-message
count). For general web browsing, two very popular Firefox extensions are Adblock Plus
and Flashblock, which remove advertisements and Flash objects from web pages.

Another category is mashups, which combine two or more web sites or services together.
The YouTube Lyrics script mentioned previously is a mashup between YouTube and a
number of lyrics search engines. The GMiF extension embeds a Google Map into a Flickr
page to show where the photo was taken (assuming geographical metadata is found in the
photo). The Delegate to Remember the Milk extension allows a GMail message to be
forwarded to the Remember the Milk to-do-list site with a single click. Chickenfoot mashups
include a script that posts the currently-viewed item on Amazon to a Mag.nolia wishlist and
a price comparison script for the online used textbook exchange, mit412.com, and Barnes &
Noble. Finally, Chickenwire, a Chickenfoot-based mashup created by two of the authors,
supports connecting YouTube and Wikipedia together, so that Wikipedia pages about songs
or movies can be linked to YouTube music videos or movie clips.

Generic vs. site-specific customization. The examples so far have targeted specific web
sites, such as GMail, YouTube, Flickr, and Wikipedia, or specific web-based systems, such as
MediaWiki and Mailman. But other customizations are designed to change the overall
experience of browsing the web. Generic simplifiers like Adblock Plus, and generic form fill-
in tools like Google Toolbar, certainly fall into this category. A generic shortcut is the
Interclue extension, which pops up a preview of a hyperlink's destination when the mouse
hovers over the link.

Other generic scripts focus on reading on the web. A vocabulary-builder script for
Chickenfoot highlights words from a vocabulary list wherever they happen to be found in
web pages, and pops up definitions on mouseoever, so that students can learn words in
context. The Lookitup Greasemonkey script can pop up the dictionary definition of any
selected word. For foreign languages, the Globefish extension helps a reader by translating
selected text, and helps a writer with idioms and awkward phrasing by measuring the
popularity of a phrase with web searches. Finally, the Froggy extension developed by one
of the authors reduces distraction and splits paragraphs into sentences, to help nonnative
English readers increase comprehension of the text.

Other scripts help with text entry. The Virtual Keyboard Interface Greasemonkey script
displays an onscreen keyboard under a textbox, for entering special characters, avoiding
keyloggers, and accessibility. Chickenfoot scripts allow any textbox to be resized and add

https://addons.mozilla.org/en-US/firefox/addon/2512
https://addons.mozilla.org/en-US/firefox/addon/4999
http://userscripts.org/scripts/show/7715
https://addons.mozilla.org/en-US/firefox/addon/7361
http://userscripts.org/scripts/show/10974


commands for joining paragraphs (removing hard linebreaks) and splitting them (inserting
hard linebreaks).

One more kind of generic script concatenates a series of web pages together, such as a
multipage article or a list of search results, using a table of contents or Next link to discover
the subsequent pages. An early Chickenfoot example did this, as do the Greasemonkey
scripts GoogleAutoPager and AutoPagerizer.

Since generic customizations essentially add functionality to the overall browser experience,
they raise questions about whether the browser itself should evolve to include these
features, and if not, why not. Similar questions arise about site-specific customizations;
why doesn't the site itself implement these features, particularly when a customization has
proved popular? Sometimes the site eventually does, but sometimes it can't, for legal or
practical reasons.

One-shot vs. repeated use. Most of these examples have been designed for repeated use
over time by the same user, and have little value if used only once. Another kind of script
is intended for a one-shot task that may never be needed by the user again. One-shot
scripts generally use automation or scraping to do a large task. These scripts are worth
creating when the size of the task is large enough that the effort put into writing the script
pays off in reduced manual effort24.

An example of a one-shot task is a Chickenfoot script that clears the bounce flag on all
subscribers to a Mailman mailing list. Mailman's interface makes this task tedious to do
manually, first because subscribers are divided up into pages by initial letter (A, B, C, ...),
forcing the user to visit 26 or more pages for a large mailing list; and second, because each
bounce flag is a checkbox next to the subscriber's email address, with no option to select or
deselect all. The Chickenfoot script automates stepping through the pages, clearing all the
checkboxes.

Other examples of one-shot automation have included clean-up tasks for a wiki;
transferring course grades from a college information system to a grad school application;
scraping school tuition data into a spreadsheet; and calculating scores for a school contest.
These examples were Chickenfoot scripts written by one or more of the authors. One-shot
automation is hard to find in public repositories, since it rarely seems worth publishing.
Also, the programming system used must have a low threshold to make it practical to
create the one-shot script in the first place. One-shot Firefox extensions seem highly
unlikely, because building a Firefox extension is serious investment. Chickenfoot and
CoScripter are easier to use for that purpose.

Creator of the customization. Most customizations are created by users of the web sites
they target. Granted, these creators may have more programming skills than the average
user. Certainly this is true for Firefox extensions, Greasemonkey, and Chickenfoot, since
those systems require knowledge of Javascript. CoScripter draws in a broader swath of
end-users, since it has no such requirement. Whether the customizer has programming
skills or not, however, the role they play in the customized system is generally an end-user.

But the customizer is not always an end user. For example, several popular Firefox
extensions have been published by web sites themselves, including Google Toolbar, Yahoo
Toolbar, eBay Sidebar, and RememberTheMilk for GMail. It may be hard to call these
customizations. In a sense they extend the web site deeper into the browser, to run code

24. R. Potter, "Just-in-time programming." In A. Cypher, ed., Watch What I Do:
Programming by Demonstration, MIT Press, 1993.

http://la.ma.la/blog/diary_200506231749.htm
http://userscripts.org/scripts/show/8551
https://addons.mozilla.org/en-US/firefox/addon/5202
http://www.rememberthemilk.com/services/gmail/addon/


with stronger permissions and more functionality (e.g., storing data locally or mashing up
data with other sites), or to provide a more persistent, browser-level interface that follows
the user around while they browse elsewhere on the web.

Another situation arises when the customizer is not just an end-user but also the owner of
the site. Open-source systems like Mailman and MediaWiki may be locally installed in an
organization, and the source code for the system may be technically available to be
changed, and yet web customization may still be a more viable route. The authors have
written many Chickenfoot scripts for systems that their organization owns and controls,
including the Mailman bounce-flag script, a script for MediaWiki editing that provides a save-
and-continue-editing command, and several scripts for the Flyspray bug database that
provide simplification and shortcuts25. Many CoScripter scripts created for internal IBM use
may also fall in this category, since IBM owns and controls many of the systems that IBM's
own employees find it necessary to customize.

Finally, the customizer may be neither an end-user nor a developer, but a researcher
exploring new ideas in web user interfaces. The four customization systems surveyed here
have proven to be fertile ground for research prototypes, many of which are described in
this book. Firefox extensions created for research purposes include Web Summaries26,
Zoetrope27, Transcendence28, and MashMaker29. IE Browser Helper Objects were used by
Creo30. Notable research uses of Greasemonkey include Accessmonkey31, PrintMonkey32,
Spartag.us33, Kalpana34, and table browsing for small screens35. In our own group,
Chickenfoot has been used in Kangaroo36, Smart Bookmarks37, and Inky38. CoScripter has
contributed to Highlight39 and Vegemite40.

Is it an arms race? A final consideration is the relationship between the customization and
the targeted web site. Some customizations bend the rules of a site. In a survey of public
CoScripter scripts, Bogart et al found that 18% of scripts sampled were designed to
circumvent assumptions made by the site that a human user was clicking on a button or
hyperlink. One example is Automated Click for Charity, a script that visits charity web sites

25. q.v. Chickenfoot chapter in this book, section "Making a Bug Tracker More Dynamic".
26. q.v. Web Summaries chapter
27. q.v. Zoetrope chapter
28. J.P. Bigham, A.C. Cavender, R.S. Kaminsky, C.M. Prince, and T.S. Robison.
"Transcendence: enabling a personal view of the deep web." IUI 2008.
29. q.v. MashMaker chapter
30. q.v. Creo chapter
31. J.P. Bigham and R.E. Ladner. "Accessmonkey: a collaborative scripting framework for
web users and developers." W4A 2007.
32. J. Baldwin, J.A. Rowson, Y. Coady. "PrintMonkey: giving users a grip on printing the
web." DocEng '08.
33. L. Hong, E.H. Chi, R. Budiu, P. Pirolli, L. Nelson. "SparTag.us: a low cost tagging system
for foraging of web content." AVI '08.
34. A. Ankolekar, D. Vrandecic. "Kalpana - enabling client-side web personalization."
Hypertext '08.
35. K. Tajima, K. Ohnishi. "Browsing large HTML tables on small screens." UIST '08.
36. q.v. "Adding Faces to Webmail" section in Chickenfoot chapter
37. D. Hupp and R.C. Miller. "Smart Bookmarks: Automatic Retroactive Macro Recording on
the Web." UIST 2007, pp. 81-90.
38. q.v. "Sloppy Programming" chapter
39. q.v. Highlight chapter
40. J. Lin, J. Wong, J. Nichols, A. Cypher, T. Lau. "End-user programming of mashups with
Vegemite." IUI '09.



and clicks on links to trigger donations without viewing the ads that pay for those
donations. Other examples include ballot stuffing for online polls and automatic players for
online lotteries or multiplayer games.

Many web sites have Terms of Service agreements for their users, and these agreements
may forbid certain kinds of automation. Sites may defend against customizations by
technical means (such as CAPTCHA tests that distinguish humans from scripts) or legal
means. One very recent case concerned a Firefox extension that injects a button into
Amazon music and video pages, linking to downloadable content on the illicit file-sharing
site The Pirate Bay. The site hosting the extension was reportedly taken down by a cease-
and-desist order from Amazon41.

Conversely, sites can welcome and support customizations. GMail is noteworthy in this
regard, providing the GMail API for Greasemonkey to make Greasemonkey scripts easier to
write and more robust to future changes.

Sites can also pay attention to what customizers are saying with their customizations, and
respond with improvements. GMail is notable here too. The GMail Delete button mentioned
as our first example has become obsolete, because GMail listened to its users and now
includes a Delete button.

Why We Customize

The basic reason users make customizations is that users want applications that were
written for "just anybody" to be optimized for their work habits and preferences. On the
web, this means that users want individual sites to have the features they need, they want
sites to be able to work together for certain tasks, and they want to make improvements to
their browsing in general - customizations that many involve all sites that they visit. In
addition, web sites tend to be less developed than most desktop software. Some sites get
launched before they are fully functional, and some sites don't get regularly updated and
have interfaces that could be improved from the users' standpoint.

From surveying existing web customizations, we can that some of the prevalent reasons
Mackay found for users making desktop software customizations in her 1991 paper are still
true on the web today.

Mackay identified one of the top reasons to customize being that the user noticed
themselves doing something repetitive. Many customizations on the web have been written
to eliminate redundant actions. For users that are constantly clicking away ads, there are
ad blocking customizations. For users who spend time looking up uncommon words, there
are customizations that add definitions for certain words in a tool tip. For users who
commonly search for icons, there is a customization that in the click of one button on
Google that will search for small (icon-sized) images. For users who repetitively look at the
enlarged product images while shopping online, there are customizations to load all the full
sizes images automatically.

Additionally, Mackay reported that feeling annoyed was a reason for customization. The
web has seen customizations to work around the annoyance of not being able to bookmark
pages such as airline fare results. There are customizations to reduce the saliency of ads on

41. D. Kravets. "Amazon.com Tossed Into Pirate Bay Jungle," December 4,2 008.
blog.wired.com/27bstroke6/2008/12/amazoncom-tosse.html

http://code.google.com/p/gmail-greasemonkey/wiki/GmailGreasemonkey10API
http://userscripts.org/scripts/show/1345


a page to make reading the content less annoying. For users who find it annoying that
Ctrl+S doesn't "Save-and-Continue" in MediaWiki edit pages, there is a customization to
bind the shortcut to that action on all MediaWiki edit pages.

Many repetitive tasks span multiple pages: shopping comparisons, looking up words in an
online dictionary, and looking up airfare for example. Web customizations can navigate
through a sequence of pages or mash up multiple web sites, while it is uncommon for
desktop customizations to use more than one application. GooglePreview inserts web page
thumbnails in Google and Yahoo search results. SmartBookmarks automates the process of
entering data and clicking through pages within a site to get to dynamically generated price
results such as airfare.

Some of the customizations we have seen are changes to individual sites that fix general
usability problems, and the sites could fix (and in some cases have fixed) these problems
eventually. Users who make these changes don't want to wait, they want to stay ahead of
the curve. This includes simple changes like moving the login interface to the top of the
page where it's more useful, and adding a delete button to GMail, which is a change GMail
eventually made.

One way in which web customization is unique is that for some sites, customization is the
only way to get certain features because the site will never provide them. Legal restrictions
prevent some sites from adding features and some commercial sites have an dis-incentive
to provide certain features. Scaffidi et al. refer to customizations who circumvent the
intensions of a site as "changing the rules." Legal restrictions prevent Wikipedia from
housing copyrighted content; one customization keeps it's own list of links to YouTube
videos relevant to each Wikipedia page and includes those videos everytime the user visits a
Wikipedia page. YouTube doesn't allow users to download its video content largely for legal
reasons, but there are several customizations that make it trivial to download the videos as
they stream. There are customizations to recommend torrent sites for particular movies on
The Internet Movie Database (IMDB). Among the CoScripter customizations designed to
"change the rules," the most devious may be a script to automate voting on a poll whose
winner receives money. Other "changing the rules" customizations include injecting one
shopping site with price comparisons to other sites, and scrubbing ads out of applications
such as GMail or sponsored search results in search engines.

In summary, users customize the web for some of the same reasons users usually
customize: to better suit their needs by making tasks less repetitive or aspects of browsing
less annoying. On the web, some of these problems arise because tasks span multiple sites
and some of them arise because web sites can be underdeveloped and have usability
problems or missing functionality. Lastly, an important reason to customize the web is to
"bend the rules" - circumvent the legal restrictions or the intentions of the site.

Conclusion and Future Directions

This chapter has shown a variety of motivations for customization in the web browser.
Customizations were fundamentally enabled by both the inherent openness of web
technology and the particular decision by Mozilla developers to make Firefox highly
extensible. The threshold of customization was lowered still further by Greasemonkey,
Chickenfoot, and CoScripter, all of which were built on top of Firefox's extension
mechanism.

Although one can expect the world of web customization to continue to grow in size and



richness, challenges remain. One continuing problem is robustness. Web sites change over
time, in appearance and organization and internal structure. Customizations that target a
changing web site will decay unless maintained and updated. If the web site commits to
supporting customizations, as GMail does through its Greasemonkey API, then this problem
can be mitigated, but it seems unlikely that more than a tiny fraction of web sites will ever
do this. Customization systems that target the rendered user interface of the site (as
Chickenfoot and CoScripter do) may prove more robust to change than those that operate
on internal HTML/Javascript interfaces (like Greasemonkey), but this remains to be proven.

Another perennial challenge comes from programming platforms that run inside the browser
but do not provide the same degree of reflection and modification as HTML and Javascript.
Java applets are probably the oldest example, but Adobe Flash/Flex and Microsoft Silverlight
are growing in popularity. Currently these platforms are used more for embedding
components (like video players or ads) in a mostly-HTML site, rather than implementing the
entire site, but as the trend toward richer interactive experience continues, site developers
may find the new platforms very enticing. A site whose entire functionality is provided by
Flash or Silverlight can't be customized using the systems described in this chapter. New
approaches may be required, lest we slip back toward the closed and less customizable
world of the desktop.

We have focused on browser-hosted customizations in this chapter, but a serious limitation
of this approach is that the user's customizations don't easily move with them as they use
different browsers on different computers. CoScripter has an advantage here, because it
stores all scripts on a wiki so that any Firefox browser with CoScripter installed can access
them. Mozilla Weave42 is an effort to solve this problem for Firefox extensions and
preferences in general.

Finally, although we made a distinction in this chapter between "desktop" and "web," in fact
the web platform we considered might better be called the "web desktop" -- the web as
seen by a conventional web browser like Mozilla Firefox running on a conventional desktop
or laptop computer with a big screen, keyboard, and pointing device. The future of the web
platform is much more diverse. Web browsers will turn up in a variety of different devices
and contexts, including cell phones, netbooks, TV set-top boxes, home media servers, and
wall displays. Mobile web customization is already an active area of research, as
demonstrated by Creo43 and Highlight44, but much work remains to be done to give users
the power to customize the web of the future.

42. labs.mozilla.com/projects/weave/
43. q.v. Creo chapter
44. q.v. Highlight chapter


	Why We Customize the Web
	Related Work
	Examples of Web Customization
	Why We Customize
	Conclusion and Future Directions


