
Glanceable Code History: Visualizing Student Code for
Better Instructor Feedback

Caitlin Cassidy, Max Goldman, Robert C. Miller
MIT CSAIL

Cambridge, MA USA
{ccassidy,maxg,rcm}@mit.edu

ABSTRACT
Immediate, individualized feedback on their code helps stu-
dents learning to program. However, even in short, focused
exercises in active learning, teachers do not have much time
to write feedback. In addition, only looking at a student’s
final code hides a lot of the students’ learning and discovering
process. We created a glanceable code history visualization
that enables teachers to view a student’s entire coding history
quickly and efficiently. A preliminary user study shows that
this visualization captures previously unseen information that
allows teachers to give students better grades and give students
longer feedback and better feedback that focuses not just on
their final code, but all their code in between.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
learning at scale; computer programming; visualizations

INTRODUCTION
Research on learning has shown that immediate, individual-
ized feedback helps student learn [1, 4, 10]. However, giving
such feedback for students learning to program is difficult.
Novice code is difficult for teachers to understand and each
student has different misunderstandings about their code.

One-on-one tutoring from a programming expert is a powerful
way to give a student individualized feedback. The expert
can take time to fully understand the student’s code and to
listen to the student explain his/her thought processes. Then,
the expert can address each of their misconceptions and give
feedback about variable names, design patterns, etc. However,
one-on-one tutoring is not feasible in large university classes,
where there are far fewer teachers than students. With existing
systems, teachers do not have time to take a fine-grained look
at student code and give in-depth feedback on it.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2018, June 26–28, 2018, London, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5886-6/18/06. . . 15.00

DOI: https://doi.org/10.1145/3231644.3231680

Figure 1. Glanceable code history for an exercise asking students to
change the CharSet1 class to implement the Set interface and write in-
ternal documentation for the CharSet1 datatype.

Computer science teachers have tried many ways to increase
the amount of feedback given to students. Researchers have
developed systems to automatically grade problem sets, give
feedback about variables, and propagate teacher feedback to
many students at once, all at scale [3, 6, 9]. Efforts also
include clicker questions in lecture and a class Q&A site like
Piazza, which improve feedback but have drawbacks, such
as students not knowing how to phrase their questions or not
knowing when to ask questions. Codeopticon, a one-to-many
tutoring interface where teachers can view student code in
real-time and proactively help students they see are struggling,
can address these issues [8]. Many classrooms also use active
learning, with some versions getting feedback to students
quickly and while they are still learning the topic [11, 2].
In computer science classrooms, active learning may include
short and focused coding exercises during class meetings, but
teachers have limited time to write that feedback.

We propose a new approach, shown in Figure 1, called glance-
able code history to improve feedback on programming during
active learning (we focus on short coding exercises in partic-
ular). This approach is a visualization that displays not only
what code students submitted at the end of the exercise, but

https://doi.org/10.1145/3231644.3231680


also highlights steps that students took along the way. This al-
lows teachers to understand how a student’s final code evolved
without watching the students the entire time or navigating
a more complex visualization [13, 14]. Teachers can no-
tice what misconceptions students first have then see whether
the students later remedy them and teachers can learn more
about that student’s coding abilities so that they can give more
in-depth and more personalized feedback.

We used glanceable code history in a preliminary study in an
MIT active learning classroom and found that for almost all
students, the visualization led to identical or better grading
and feedback for students. In multiple instances, the students
received a better grade and/or better feedback when teachers
used glanceable code history.

IMPLEMENTATION
We implement glanceable code history as part of Constellation,
an existing system for pair-programming on in-class exercises
[7]. The system was designed for an MIT class – 6.031 – that
teaches "fundamental principles and techniques of software
development" [5, 12]. This class uses active learning in
almost all class meetings: teachers give 10-15 minute coding
exercises where students collaborate on Java code in pairs
through Eclipse. Figure 2 illustrates Constellation’s current
visualization, which only shows final code: any student-added
code is highlighted in yellow and provided code has gray text.

Our visualization replaces Constellation’s current visualization
and shows the critical parts of a student pair’s code history
during these active learning exercises concisely to ensure it’s
glanceable. The algorithm records individual edits, groups
them to create snapshots of student work over time, captures
differences between those snapshots, combines the differences
together, and displays them. Here is a detailed breakdown:

Operations
Constellation already includes an Eclipse plug-in for students
that stores every operation performed by each student. These
operations include the text that was typed or deleted and a
timestamp, and form the basis for the algorithm.

Snapshots
From the operations, we generate a series of snapshots of the
student’s code at various times. We separate snapshots when
the time between a previous operation and the next operation
is greater than a given threshold. The threshold ensures that
we don’t include spurious information, like typos. After cal-
ibrating with many different student pairs and exercises, we
chose a default threshold of 10 seconds (10000 milliseconds).

Diffs
Next we use a standard text diff, where the differences between
two pieces of texts are represented as blocks of insertions,
deletions, and unchanged text. A standard text diff uses a line-
based diff, so that any change in a line is represented as the
deletion of the entire line and an insertion of the new, edited
line, and we use a line-based diff as well because we found that
it was easiest for teachers to understand quickly. We generate
a standard text diff between every two consecutive snapshots –
for example, given ten snapshots, we have nine diffs.

Figure 2. Constellation’s current visualization only shows final code.

Baseline
Typically, teachers provide students with code before the exer-
cise and it’s important to distinguish provided code from all
other code. To do this, we add a diff at the very beginning
that is the provided code represented as one unchanged block
to be our baseline. We also mark it with a special marker,
"provided", and carry that marker throughout the next step so
that we can display provided code differently.

Combined Diff
We then combine all of our individual diffs together to create
a single diff that still has blocks of insertions, deletions, and
unchanged text. To do this, we iterate over each individual
diff in turn and combine it with the previous diffs. For any
added parts, we insert the block and mark it as added. For
any removed parts, we scan through all blocks that contain
the removed text and mark those block(s) as removed. Since
we keep all removed code from past diffs, our combined diff
will contain characters that future diffs do not know about.
The algorithm’s main challenge is skipping over those parts
when combining those future diffs. Figure 3 shows how the
algorithm transforms operations into a combined diff.

Display
We then display the combined diff for teachers. We found that
teachers often want to pay attention to the pair’s final code first
then deleted code afterwards (since the final code gives them
context for the code’s history), so we show all final code (both
provided code and student code) on the left and deleted code
(both provided code that was deleted and code that students
added then deleted later) on the right. We also allow them to
only see final code with a toggle button, shown in Figure 1.

Figure 4 looks at an exercise where a student adds two new
print statements and then deletes them, highlighting how
glanceable code history gives the teacher a far better under-
standing of a students’ work. Figure 5 gives a key explaining
the display. Any code that students added and still have at the
end of the exercise is highlighted in green. Provided code is
gray text, and is struck through if the student deleted it. Code
that students added then deleted at some point later has gray
text, is struck through, and is highlighted red to distinguish it
from deleted provided code.

PRELIMINARY USER STUDY
We conducted a preliminary user study to see whether the
glanceable code history visualization improved the feedback
received by students by studying one exercise in the MIT 6.031
classroom. Student pairs were given buggy Sudoku puzzle
solver written in Java, and a failing test case: trying to solve
the empty puzzle would fail. Students were asked to reduce
this test case, so that instead of trying to solve the empty puzzle
(9x9=81 blanks), the solver was shown to fail on a puzzle with



Figure 3. Individual insert and delete operations transform into snapshots, then diffs, then a single combined diff with appropriate labels.

Figure 4. Glanceable code history reveals previously unseen student
work, allowing teachers to better understand how students program.

Figure 5. A key explaining the display of glanceable code history.

fewer blank squares. Our users were the Teaching Assistants
(TAs) for 6.031, who grade active learning exercises multiple
times in each class (each TA grading 12-18 pairs per exercise.
TAs give each pair a grade of a -, (no or little progress and
no credit), 3 (sufficient progress), or 3+ (excellent progress),
and almost always write a comment as feedback.

For our study, the TAs followed the same process as normal
class meetings, except that they graded the first half of their
students using the glanceable code history visualization and
the second half using Constellation’s current visualization.
Both visualizations were integrated with the normal interface
shown in Figure 1. TAs have a lot of experience with the
current visualization, so we could not control for the amount
of exposure; rather, we wanted them to use each visualization
on an equal number of pairs. We also randomly selected some
students to be graded twice, once with the current visualization
and once with our glanceable code history. There were 109
student pairs and 144 grades given out (8 TAs with 18 students
per TA), with 35 pairs graded twice (32% of the total pairs).

Based on a qualitative review on the collected grades and
comments, we found that the visualization led to identical or
better grading and feedback for students. As evidence of the
visualization allowing TAs to learn more about student’s entire
coding process, we saw multiple examples where glanceable
code history captured important information that the current
interface did not. Figure 6 shows the code of a pair who re-

ceived a - score and the feedback "Test case not simplified"
when being graded without code history, since the current
visualization would only show the information on the left side.
Yet that pair received a 3 score and the feedback "Good start.
You were on the right track with filling in less 0’s" by the TA
who used glanceable code history. That TA saw evidence of
student progress and had more code on which to give feedback.
Figure 7 shows student code that illustrates how the current
visualization would show only one attempt at solving the ex-
ercise while the additional code history highlights the pair’s
exploration of different test case reductions and explains how
they arrived at their final solution.

We also saw improved feedback given by TAs who used the vi-
sualization. One pair received the feedback "Excellent strategy
and regression tests!!" by the TA who used our visualization,
versus "Good job" by the other. While this could be due to
individual differences between how TAs give feedback, we
saw that on average, TAs used 49.4 characters in their feed-
back when they were using glanceable code history, and 43.2
characters without. 82% of feedback given using the current
visual had more than 10 characters, while 90% of feedback
given using glanceable code history were at least that long.

We found two cases where a pair received a worse grade when
the TA used glanceable code history versus a TA using the
current visualization. For one pair, their history had many
different additions and deletions spread throughout the file
and that may have made their code more difficult to read.
To address this, our next iterations will explore altering the
algorithm to prune the code history if it gets too large and
making it easier for TAs to remove the display of history. For
the second pair, we hypothesized that they received a lower
score because the current visualization has syntax highlighting,
which made a code comment very easy to see, whereas code
history does not incorporate any syntax highlighting. We will
try incorporating syntax highlighting in the next iteration to
improve code readability.

When TAs evaluated the glanceable code history interface,
they found it to be generally useful. While they all graded
some pairs of students without needing to look at deleted code,
they found certain pairs where it became very helpful. One
TA wrote "I was able to give credit to a pair who deleted some
good progress with the red/green visualization. Seeing some
of the deleted code helped with figuring out the pair’s train of



Figure 6. The glanceable code history visualization raised this pair’s score from a - to a 3 since the history highlights some student progress.

Figure 7. Glanceable code history highlights this pair’s exploration of many different solutions.

thought" and another wrote "Cool to see do-then-undo actions.
Had clear case where final code doesn’t tell the whole story
(ended with starting code, but tried something in between)".

CONCLUSION
Glanceable code history visualizes student code and is tailored
specifically to improve feedback given by teachers after short,
active learning exercises in programming. A preliminary user
study has shown that this visualization allows teachers to see
and understand the steps a student took before arriving at
their final code, and helps teachers give more in-depth and
stronger feedback. Future work will include prototyping other
visualizations of code history and iterating on glanceable code
history based on user feedback. Glanceable code history can
allow teachers to better understand a student’s entire coding
process and allow students to receive more helpful feedback
than is currently possible.

REFERENCES
1. S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C.

Lovett, and M. K. Norman. 2010. How Learning Works:
Seven Research-Based Principles for Smart Teaching (1
ed.). Jossey-Bass.

2. C. Bonwell and J. A. Eison. 1991. Active Learning:
Creating Excitement in the Classroom. ERIC
Clearinghouse on Higher Education.

3. B. Cheang, A. Kurnia, A. Lim, and W. Oon. 2003. On
automated grading of programming assignments in an
academic institution. Computers Education 41, 2 (2003),
121–131.

4. National Research Council. 2000. How people learn:
Brain, mind, experience, and school: Expanded edition.
National Academies Press.

5. MIT EECS. 2018. 6.031 Software Construction Class
Website. (2018). http://web.mit.edu/6.031/www/sp18/.

6. E. Glassman, L. Fischer, J. Scott, and R. C. Miller. 2015.
Foobaz: Variable name feedback for student code at scale.
In UIST 2015 (ACM). 609–617.

7. M. Goldman. 2018. Constellation. (2018).
http://maxg.github.io/constellation.

8. P. J. Guo. 2015. Codeopticon: Real-time, one-to-many
human tutoring for computer programming. In UIST
2015 (ACM). 599–608.

9. A. Head, E. Glassman, G. Soares, R. Suzuki, L.
Figueredo, L. D’Antoni, and B. Hartmann. 2017. Writing
Reusable Code Feedback at Scale with Mixed-Initiative
Program Synthesis. In Learning@ Scale 2017 (ACM).
89–98.

10. K. Koile and D. Singer. 2006. Improving learning in CS1
via tablet-PC-based in-class assessment. In Proceedings
of the second international workshop on Computing
education researchy (ACM). 119–126.

11. C. Meyers and T. B. Jones. 1993. Promoting Active
Learning. Strategies for the College Classroom.
Jossey-Bass Inc.

12. MIT. 2018. 6.031 Course Description. (2018).
http://student.mit.edu/catalog/search.cgi?search=6.

031&style=verbatim.

13. J. Park, Y. H. Park, S. Kim, and A. Oh. 2017. Eliph:
Effective Visualization of Code History for Peer
Assessment in Programming Education. In CSCW 2017
(ACM). 458–467.

14. Y. Yoon, B. A. Myers, and S. Koo. 2013. Visualization of
fine-grained code change history. In VLHCC 2013
(IEEE). 119–126.

http://web.mit.edu/6.031/www/sp18/
http://maxg.github.io/constellation
http://student.mit.edu/catalog/search.cgi?search=6.031&style=verbatim
http://student.mit.edu/catalog/search.cgi?search=6.031&style=verbatim

	Introduction
	Implementation
	Operations
	Snapshots
	Diffs
	Baseline
	Combined Diff
	Display

	Preliminary User Study
	Conclusion
	References 

