
Iterative Improvement of Practice Exercises
By Students and Staff

by

Jenna Himawan
S.B. Computer Science and Engineering

Massachusetts Institute of Technology, 2021

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2020. All rights reserved.

Signature of Author:...

Department of Electrical Engineering and Computer Science
May 20, 2021

Certified By:...

Rob Miller
Distinguished Professor of Computer Science

Thesis Supervisor

Accepted By:..

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

1

2

Iterative Improvement of Practice Exercises By Students and
Staff

by

Jenna Himawan

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract
Practice is an important part of mastering any discipline. As a result, many courses

provide students with example problems. However, the processes by which these ex-

ercises are created and presented to students can make it difficult to create, review,

and edit them. This thesis describes an exercise bank framework that facilitates the

authorship of new practice questions and the iterative development of existing ones.

The exercise bank uses conceptual models that treat exercises not as seldom-changing

pieces of course material but as collections of data that are continually in need of

review and revision. Operations on these exercises cause them to transition between

different states over the course of their development. This thesis discusses the design

and implementation of two exercise bank systems for the course 6.031: Elements of

Software Construction. These exercise banks proved useful to both staff and students

in generating and understanding course material.

Thesis Supervisor: Rob Miller

Distinguished Professor of Computer Science

3

4

Acknowledgements
I owe a debt of gratitude to everyone who, knowingly or otherwise, was crucial to the

work contained in this thesis: namely, the present and past instructors, TAs, LAs, and

students of 6.031. It is due to the time and effort that they put into the class that

I have any basis for my work. I would like to especially thank the instructors, Rob

Miller (also my thesis advisor) and Max Goldman, for their support, design advice,

technical help, and immense patience. Their guidance made my MEng possible, and

I’m so grateful to them for giving me the opportunity to be involved with 6.031, as an

LA, TA, and research assistant.

I would also like to thank the entire MIT community, especially the students and

staff of Simmons Hall. I never got to properly say goodbye to The Sponge, but I will

always cherish my memories of Mystery Hunt in Simmons Dining, board games in 7A

lounge, and early mornings and late nights in the Country Kitchen during REX and

CPW. I might even miss the fire alarms.

My boyfriend, Michael Tang, has been a wonderful safekeeper of my mental well-

being. His dorky sense of humor and passion for puzzles reliably put a smile on my

face, but it is his truly kind, considerate nature, and the support he has provided in

tough moments, that have allowed me to persevere through some very difficult and

stressful times.

I cannot possibly express how much I owe my parents, Jeff and Lisa Himawan.

Without the values they taught me, or the time and money they invested in my up-

bringing and education, I would have had no chance of getting into MIT. I will never

be able to pay them back for their exceptional parenting, advice, or emotional support,

but I will try in the only ways that I know how: by returning the love that they have

showered upon me throughout my entire life, and by writing the thesis that follows, in

the hope that I might make them proud.

5

6

Contents

1 Introduction 11

2 Related Work 15

2.1 Applications of Learnersourcing . 15

2.2 Evaluation of Learnersourcing . 17

2.3 The Importance of Moderation . 18

2.4 Existing 6.031 Tools . 19

3 Design 21

3.1 Goals . 21

3.2 Operations . 22

3.3 Git as a Version Storage Mechanism . 24

3.4 Use of Git in 6.031 . 25

3.5 User Interface . 26

3.5.1 Fill-in-the-Blank Exercises . 26

3.5.2 Exercise Bank for Student-Authored MCQs 27

3.5.2.1 Students . 27

3.5.2.2 TAs and Instructors 30

4 Implementation 43

7

4.1 Data Storage . 43

4.1.1 Fill-In-The-Blank Exercises . 44

4.1.2 Exercise Bank for Student-Authored MCQs 45

4.2 User Interface Implementation . 48

4.2.1 Fill-In-The-Blank Exercises . 48

4.2.2 Exercise Bank for Student-Authored MCQs 49

5 Evaluation 56

5.1 Fill-in-the-Blank Exercises . 56

5.2 Student Practice with Student-Authored MCQs 57

5.3 Facilitation of Exercise Development 58

5.3.1 Number of Contributors . 59

5.3.2 Amount of Change per Exercise 60

6 Conclusion 64

6.1 Further Work . 65

8

List of Figures

1.1 Current states, data flows, and operations for fill-in-the-blank coding

exercise questions . 13

1.2 Current states, data flows, and operations for Questionable Makeup sub-

missions . 13

3.1 Exercise state transitions . 23

3.2 States, data flows, and operations for fill-in-the-blank exercise questions

with the exercise bank system . 33

3.3 States, data flows, and operations for Questionable Makeup submissions

with the exercise bank system . 33

3.4 The VSCode-based interface for playtesting a fill-in-the-blank exercise . 34

3.5 An example email about an error in fill-in-the-blank exercises 35

3.6 The home page of the exercise bank . 36

3.7 The practice page of the exercise bank 37

3.8 The box for student feedback . 38

3.9 After the student leaves feedback . 38

3.10 The modal box for suggesting edits . 39

3.11 Error message seen if student does not attempt a question 40

3.12 Error message seen if student does not complete the formatting checklist 40

3.13 The add exercises page . 40

9

3.14 A page for an individual exercise which is being considered for addition

to the exercise bank . 41

3.15 The review exercises page . 41

3.16 The page for reviewing a single exercise 42

4.1 if::else-if concept . 51

4.2 Basic TypeScript concept group . 51

4.3 if, else-if, and else tutorial in TypeScript 51

4.4 An example of metadata at the top of a fill-in-the-blank exercise file . . 52

4.5 The GitHub web UI for editing and committing a file 53

4.6 Names of GitHub directories in the exercise bank repository 54

4.7 Filenames of exercises about the topic of ADTs 54

4.8 The webhook information page on GitHub 55

5.1 Number of attempts per day . 58

5.2 Number of users per day . 59

5.3 An example of formatting, wording, and conceptual changes 61

5.4 Changes made by TAs . 62

5.5 Changes made by students . 63

10

Chapter 1

Introduction

Providing students with opportunities to practice the concepts that they have seen

in class is vital for their learning. Collections of questions and exercises explicitly

designated for practice are especially helpful. However, creating and maintaining these

collections is quite difficult. Generating and proofreading new questions to use is time-

consuming, as is editing existing problems. Encouraging the creation of and iteration

on course exercises can be done by increasing the number of people involved in these

processes and decreasing the amount of time and effort necessary to participate.

Coming up with an exercise takes time. One way to ensure that a greater amount

of time is devoted to exercise generation is for existing authors to put in more effort.

However, this is not easily scalable, and these people often have other, higher-priority

tasks, especially lecturers and section instructors. A natural alternative is to increase

the number of contributors. This has the added benefit of bringing new perspectives

to the task, which is especially helpful for creative undertakings like exercise creation.

Course infrastructure occasionally imposes an additional barrier to adding and mod-

ifying exercises. For instance, someone may need to learn where and how data is stored

and edited before even starting on the process of exercise revision. This can be unneces-

11

sarily troublesome, especially if data is in multiple places or uses unfamiliar frameworks

or file formats. Furthermore, reviewing interactive exercises for correctness may require

running a local development server. Decreasing the number of things that a potential

exercise author has to learn and the number of steps required to bring an exercise from

its concept stage to its review stage would make the exercise-writing process more

user-friendly and less laborious.

To achieve these goals, this thesis proposes an exercise bank system that allows

more users to contribute to practice problems and makes it easier for any individual

user to do so. The exercise bank is designed and tested for MIT’s 6.031: Software

Construction class, consisting of approximately 250 students per semester. This thesis

describes two exercise bank implementations for two groups of exercises in this class:

fill-in-the-blank exercises and student-authored multiple-choice questions.

In order to ensure that students practice the syntax and features of a possibly un-

familiar language, 6.031 requires that they complete a series of fill-in-the-blank coding

exercises, using a system based on Java Tutor [14]. Adding one of these exercises re-

quires uploading a source file and specifying metadata. This metadata includes hints,

links to tutorials, names of concepts that are being utilized, and regular expressions

that match possible solutions. Prior to the implementation of the exercise bank frame-

work, testing a new exercise in order to verify that it appears correctly to students

required that the tester had a clone of the Git repository of exercises as well as a

local development server. This workflow is shown in Figure 1.1. The exercise bank

streamlines the process of adding new exercises, testing them, and modifying them.

In 6.031, students are able to do a bit of additional work in order to recover some

lost points from in-class exercises. Students use the Questionable Makeup System [11]

to answer and provide feedback on three multiple-choice questions (MCQs) similar to

ones that might appear on exams, and then finally write one multiple-choice question

12

Figure 1.1: The current states, data flows, and operations for fill-in-the-blank coding
exercise questions.

themselves. Prior to the creation of the exercise bank, these student-authored MCQs

were graded by staff and stored in a database, but not subsequently used. This workflow

is shown in Figure 1.2. The introduction of our framework allows the student-authored

MCQs to be reviewed, revised, and made public for other students to practice.

Figure 1.2: The current states, data flows, and operations for submissions to the Ques-
tionable Makeup system.

The two exercise bank implementations model exercises as objects whose associ-

ated operations cause them to transition between different stages of revision. The

current contents and history for each exercise are stored in a Git repository, which

supports version histories very naturally in addition to facilitating collaboration. This

Git repository and MongoDB together store the exercises and metadata the system

13

needs. Staff members add and edit fill-in-the-blank exercises through the Git repos-

itory, which they can then preview using an IDE extension. The exercise bank of

student-authored MCQs is managed through a web app. Staff members review, revise,

and publish student-authored MCQs, and students answer the published ones.

The exercise bank for fill-in-the-blank exercises allowed collaboration from many

members of the 6.031 staff. It successfully reduced the workload on the instructors,

and was intuitive enough that the non-instructors who contributed were not overly

burdened by a learning curve. The improvements this thesis contributed to the user

interface were also well-received by the staff.

Students demonstrated significant interest in practicing with the exercise bank of

student-authored MCQs. Even though interacting with this exercise bank was optional,

almost half of the class attempted at least one exercise. Usage was relatively steady

throughout the semester, with a very noticeable peak right before the quiz held in

the middle of the term. In addition to being useful for students, the exercise bank

successfully allowed both students and staff to iterate on the student-authored MCQs.

The majority of questions were edited in some way from the original, and approximately

37% of these revisions were more significant than small edits to formatting and wording.

14

Chapter 2

Related Work

The exercise bank is designed to provide students with high-quality practice questions.

However, students do not have to simply be viewed as a passive audience that con-

sumes questions. Kim demonstrates that learnersourcing [9], which refers to using a

large group of learner input in order to improve course material and establishing a

feedback loop between learners and the system, is incredibly valuable. Not only can

learner interactions with a system be observed in order to determine how to make

improvements, learners can participate actively as content creators.

2.1 Applications of Learnersourcing

In Kim’s paper on learnersourcing [9], he details two examples of learnersourcing in the

context of educational videos. The first system he presents involves passive learner-

sourcing, in which inputs obtained from learners as they use the system—such as when

they tend to pause, rewind, and skip—is used in order to detect areas of particular

interest and allow for easier navigation to and within such areas. The second type of

learnersourcing is active—users were asked to annotate step-by-step how-to videos by

15

providing timestamps, textual descriptions, and before and after images, and those re-

sults were combined to generate user interfaces that provided an overview of the steps

and facilitated jumping to particular subtasks.

Learnersourcing has also been used in a variety of university courses. One possible

usage is creation of materials for the course. Tarasowa et al. created SlideWiki [17],

which allows students to collaboratively work on lecture slide decks by creating new

slides, editing the text on a particular slide, and reordering slides. In a framework used

by an introductory Information Systems course at the University of Cologne, students

write problems and solutions, which are then reviewed and improved by other students

before being assembled into exams [10].

Other systems have used student input to supply personalized hints and feedback.

Heffernan et al.’s ASSISTments system [8] enables learners to solve practice problems,

request hints when they are stuck, and leave comments. Course staff can view the most

common wrong answers, then add hints and feedback that are shown specifically when

future students demonstrate the same misconception. An example of active learner-

sourcing with a similar goal is Glassman et al.’s Dear Beta system [5], in which students

who recently eliminated a bug, as detected by a change in their code’s performance

on teacher-designed test suites, are prompted to create hints about how to fix that

problem. Students who encounter similar issues are shown these hints automatically,

and can upvote helpful ones. Additionally, a mandatory self-reflection activity requires

students to write hints that help others optimize their code. These hints are shown

upon request, rather than automatically.

Of particular relevance to this thesis is using learnersourcing to generate student-

written practice problems. For example, Denny, Cukierman, and Bhaskar [3] estab-

lished a program that enabled students to devise short-form coding problems, example

solutions, and test suites as part of preparation for an exam. All students were then

16

required to solve some of the problems created by their peers. In Mitros’ pilot study

[13], high-achieving students in an introductory electronics class were able to produce

high-quality complex design questions after attending a short course about how to write

good autograded assessments and participating in a discussion forum where other stu-

dents and staff members could comment and collaborate on draft questions. Lastly,

PeerWise, a platform initially created by Denny, Hamer, and Luxton-Reilly [4] but since

used in many other university courses [7], enables students to create multiple-choice

questions and explanations, and answer, discuss, and rate others’ submissions.

2.2 Evaluation of Learnersourcing

The majority of experiments conducted on learnersourcing aimed to discover its ef-

fect on grade performance and/or exam performance, and found that they generally

improved with increased engagement in learnersourcing activities [3, 4, 7, 17]. For

example, a review of PeerWise usage in five science courses at Edinburgh, Glasgow

and Nottingham found positive correlations between the numbers of questions au-

thored, answers submitted, comments posted, and days of activity with exam scores

[7]. Furthermore, Denny, Cukierman, and Bhaskar conducted a randomized experi-

ment which divided an approximately 200-student introductory programming course

into two groups, both of which answered student-generated practice questions but only

one of which actually authored said problems, and found that the average score of stu-

dents who invented exercises was nearly 14% higher than the other group’s on the next

exam [3]. Thus, they demonstrated that the learning materials and feedback that a

learnersourcing framework produces are not the only means of benefiting the students.

The act of generating input for a learnersourcing framework is helpful in itself.

Many of these studies also attempted to gauge how the students felt about the

17

learnersourcing opportunities. One way of assessing student sentiment was exit sur-

veys. These questionnaires usually indicated that students enjoyed the learnersourcing

activities and appreciated their outputs. The most common benefits of learnersourcing

that the students mentioned in their surveys are the wide variety and large quantity

of practice opportunities [3, 17], the hints and prompt feedback [3, 5], and the viewing

of their peers’ approaches and solutions to problems [3]. A second way of analyzing

student opinions is the amount of voluntary participation—the level of engagement

with the platform beyond what contributes to their grades. Learnersourcing activities

usually elicited more participation than was required for class, implying that students

found the activities fun and/or rewarding [3, 4, 7, 17].

2.3 The Importance of Moderation

In experiments involving active learnersourcing, researchers were often curious about

the quality of learner output. Many of them went through the output in order to

assess its quality. Some approaches include rating it on a 0-5 scale [3, 7], comparing

it to outputs produced by experts [9], or qualitatively evaluating it [13]. All of these

approaches found that learner output, on average, is of moderate quality. In cases

where students produced practice questions for their peers, most problems were found

to be of medium difficulty or above.

Although learnersourced output is, on the whole, decently good, it is possible to

increase average quality through moderation, which may result in the elimination of

bad submissions and/or improvements to each submission. The amount and kind of

moderation used by each system varies. The most common approach was to allow

students to upvote and downvote each others’ submissions [5, 8] or rate submissions

on a point scale [4, 7, 10, 17]. Some experiments allowed students or instructors to

18

comment on the output [4, 7, 13]. Other processes allowed students to iterate on each

others’ work [9, 13, 17]. While some authors believe that instructor moderation is time-

consuming, thus somewhat neutralizing one of the main benefits of learnersourcing [3],

others allow instructors to drop content from the system [8] and some require instructor

vetting of all exercises [10]. How best to assure quality of crowdsourced output is

a more general question which has been studied extensively outside of educational

settings. Some ideas include limiting the pool of users who can contribute by using

reputation scores or other credentials, or checking the results with expert review or

majority consensus [1].

2.4 Existing 6.031 Tools

The work presented in this paper largely builds on two frameworks that were previously

made for, and are currently used in, the MIT course 6.031: Software Construction.

The first is Java Tutor [14], which prompts students to complete a concept map by

solving short, fill-in-the-blank coding exercises. If a student gets a problem wrong,

the student attempt is compared to an instructor-provided regex-to-hint mapping, and

an appropriate hint is shown along with some tutorials. Once the student solves the

question, they are given an explanation to reinforce the concept they just learned.

However, the Java Tutor framework was not built to easily support changes to the set

of exercises. Without the exercise bank, making any modifications involved working

with an extremely large data file, and previewing the output required the setup and

running of a local development server. As a result, there was a lot of room for potential

improvement by making it easier to iterate on the exercise content.

The second tool that this work directly builds on is Questionable [11], a website

which allows students to improve their grades by answering and providing feedback on

19

several multiple-choice questions—most of which were written by students as part of

participation in Questionable—and then authoring and submitting one multiple-choice

question of their own. The benefit of Questionable largely comes from the testing effect,

the fact that answering questions about material improves learning more than studying

it for the same amount of time [15]; the advantages of peer assessment, which has been

shown to improve students’ critical thinking, communication and collaborative skills [2,

16]; and the advantages of creating practice problems [3]. However, this large collection

of student-authored multiple-choice questions was not made available for practice.

20

Chapter 3

Design

The exercise bank system needs to facilitate authorship of and iteration on class ex-

ercises in a wide variety of situations. Thus, this section presents a conceptual model

which emphasizes the development of a problem over time. A single exercise is not

represented as a static object, but rather a collection of versions in an assortment of

states, each of which corresponds to a different level of modification and/or quality.

The operations that can be performed on an exercise cause different transitions between

these states.

3.1 Goals

An exercise bank implementation must store information about an exercise and its

development. It must then present this data to the users and provide them with ways

to interact with and modify it.

Our representation of exercise content should reflect not just its current text and

state, but also its history. Being able to see the past versions of an exercise is important

for understanding its trajectory and enabling further improvements. By looking at the

21

history of an exercise, a user can see the differences between one revision and the next.

This allows them to determine the issues that each edit was attempting to address

and thus pinpoint possible areas of continued improvement, as well as problems that

may have arisen with the most recent update. Furthermore, the ability to reference

past attempts at writing the question allows users to more easily avoid the issues that

affected previous iterations.

The user interface of the exercise bank is critical to its success. In order to reduce

the amount of time that is required for a new author to begin contributing, or the

amount of effort needed to produce a new iteration on a previous exercise, the tool

must be easy to understand and use. It should be clear to each type of user which

operations they are allowed to perform, and how to accomplish each one. Furthermore,

the platform should facilitate iteration by calling attention to exercises that may be in

need of fixing or topics that are currently lacking in coverage.

3.2 Operations

The evolution of an exercise can be thought of as transitions between several states,

from an initial concept to a published exercise. However, even a published exercise can

and should continue to be modified. These states do not form a linear pipeline that

eventually produce a finished product, but rather form miniature cycles of revision and

improvement that will be traversed many times over the lifetime of an exercise. The

transitions between states are supported through several operations:

• suggest-add: creates a suggestion for a new exercise, which must be approved

through add.

• add: puts an exercise into the exercise bank.

22

• suggest-modify: creates a suggestion for changes to an existing exercise, which

must be approved through modify.

• modify: makes changes to an existing exercise.

• publish: makes an exercise that is currently present in the bank available for

public viewing.

• attempt: records a user’s attempt at answering an exercise.

• unpublish: temporarily prevents users from answering an exercise until it is

revised.

• delete: eliminates an exercise from the exercise bank. Unlike with unpublish,

it is not expected that the exercise will be revised and made available again for

answering.

The exercise bank system allows any number of groups of users to be created and

permits each group to be given any set of the above permissions.

To clarify the use of the operations in the exercise bank, consider the following

example:

Figure 3.1: State transitions, the operations causing them, and the contents of an
exercise over time.

23

1. Someone creates a new exercise and suggests that it be added to the exercise

bank. The contents of this exercise are currently portrayed in Figure 3.1 by

version 0.

2. The exercise is added to the bank.

3. A suggestion for an edit to the exercise is made. The updated contents are

represented by version 1, and the history of the exercise is grayed out below.

4. The suggestion is accepted.

5. The exercise is published.

6. Alice attempts the exercise, and information about her attempt is stored. This

information is associated with version 1 of the exercise, since that was the

version Alice saw.

7. Someone suggests an edit to the exercise. Since this is only a suggestion for the

moment, anyone attempting the question will continue to see version 1.

8. The suggested edit is accepted. Now, attempters will see version 2.

9. The exercise is deleted from the bank.

3.3 Git as a Version Storage Mechanism

One natural way to track and interact with all of the iterations of an exercise over

time is Git. Git is designed for making incremental improvements to software, and it

therefore has many useful capabilities, such as the ability to store version history and

create multiple branches. Hosting Git repositories on GitHub provides a web interface

that allows contributors to create commits and pull requests. It also provides APIs and

24

permits users to set up webhooks to respond to certain events and create organizations

containing roles with different permission levels. Additionally, Git and GitHub should

already be familiar to most members of a computer science course staff, and possibly

some of the students, which reduces the learning curve for new authors.

3.4 Use of Git in 6.031

It is easy to use Git as database that easily supports collaborative and iterative de-

velopment, and it is easy to draw parallels between parts of a Git repository, such as

the main branch or an unmerged branch, and the possible states for an exercise, as

detailed in Section 3.2. To illustrate this, this section describes the operations which

each group of participants in 6.031 have permissions for, as well as the Git data flows

in both of the implemented exercise banks.

For fill-in-the-blank exercises, instructors have permissions for publish, add, and

modify; teaching assistants (TAs) have add and modify; and students have suggest-modify

and attempt. This means that the standard workflow is as follows. To add a new exer-

cise, either an instructor or TA composes the exercise and commits it to any branch. To

publish the exercise, an instructor merges it to the main branch, and it is automatically

published. Students can then view the exercise and communicate suggestions about

modifications to the staff. A TA can then create a new branch with some changes, and

an instructor can merge it (thus updating the published version). This new workflow

is shown in Figure 3.2.

For the exercise bank of student-authored MCQs, course instructors and TAs have

publish, add, and modify; students have suggest-add, suggest-modify, and attempt.

Thus, the workflow is as follows. New exercises can either be committed on the main

branch and automatically published by TAs and instructors, or they can start out as

25

student-authored commits on non-main branches and then be merged into main. Stu-

dents can also suggest edits in a similar fashion, by committing to a non-main branch

which may later be approved, thus updating the published version of the exercise. This

new workflow is shown in Figure 3.3.

3.5 User Interface

In order to streamline the processes of exercise authorship and iteration as much as

possible, it is important that students and staff members easily understand and intu-

itively interact with the exercise bank. This section details the user interfaces for both

systems as well as the workflows for students and staff members.

3.5.1 Fill-in-the-Blank Exercises

Prior to the implementation of the exercise bank for fill-in-the-blank exercises, the

workflow for TAs was as follows:

1. In a local copy of the repository, edit concept map and exercise files

2. Run an upload script which informs the user about any errors, and if none oc-

curred, uploads the changes to a local database

3. Preview changes on a local development server

4. Commit to a non-main branch in GitHub and make a pull request

(See figure 1.1 for a pictorial representation of this workflow.)

Staff members were able to discover which problems were in need of attention

through student feedback. If a student clicked on a "report a problem" through the

interface they used to complete the exercises, an email containing the written feedback,

26

as well as automatically-produced data about their interactions with the exercise, would

be sent to one of the instructors. The instructor would then relay this information to

the TAs and request that they re-examine the potentially problematic question.

In order to reduce the workload and learning curve for both TAs and instructors,

this thesis implemented automatic processing and serving of draft versions of exercises

and improved the email alert system. After a TA pushes a new version of an exercise to

the repository, if no errors occurred, they can then preview it using the same interface

that students use to complete exercises. This interface is shown in 3.4. However, if

an error does occur, the TA and an instructor receive an email alert describing the

problem. An example error alert is shown in 3.5.

3.5.2 Exercise Bank for Student-Authored MCQs

This exercise bank, unlike the one for fill-in-the-blank exercises, did not have an existing

user interface. Thus, the exercise bank needed to provide students with an easy way to

perform exercise bank operations. In addition, students should be able to conveniently

perform activities that do not directly correspond to the operations outlined in Section

3.2 but are helpful in reviewing and enhancing their learning. One example of such an

activity is revisiting problems that they had attempted previously. The exercise bank

should also facilitate interaction with staff members, rather than having them interact

directly with Git, so it provides web pages for staff member operations as well. To

provide user interfaces for both student and staff, the exercise bank uses a web app

based on Questionable [11].

3.5.2.1 Students

Students have suggest-add permissions on the exercise bank. A suggestions for a

new exercise is created whenever a student submits an MCQ through Questionable.

27

Staff members later use the exercise bank interface to review and potentially approve

these student-authored MCQs. Additionally, students use the exercise bank interface

to request questions for practice, revisit questions that they have attempted before,

and suggest edits to or leave feedback comments on existing questions.

The home page of the exercise bank, as shown in Figure 3.6, consists of two parts.

The first is a dropdown menu that allows students to select a topic that they wish to

review. Each topic is prefixed with a number, which is the lecture number that covered

that topic during the current semester. The mapping of lecture numbers to topics is not

constant between semesters, and is generated based on database information populated

prior to the beginning of the semester. The second is a list of questions that the student

has attempted, in most-recent to least-recent order. Each item contains the topic; the

filename of the exercise, which contains some keywords from the exercise, as described

in Section 4.1.2; and the time of the most recent viewing of the question.

Selecting any item from the dropdown menu and clicking "next" brings the student

to a separate page, shown in Figure 3.7. This page has three exercises about the selected

topic. The exercise bank system selects questions by finding all questions about that

topic, then sorting them in ascending order of number of attempts by the querying

student and selecting the first three. As a result, the student is shown all questions at

least once before any questions repeat. Furthermore, once they have seen all questions,

they do not see any given question at a disproportionate frequency. Beneath each

question are some options to leave feedback on the question or an edit to the question.

Clicking on the "leave feedback" option creates a text box, along with associated

"cancel" and "submit" buttons. Clicking on "cancel" gets rid of the text box and

buttons, while typing a message and clicking on "submit" will disable the text box,

hide the buttons, and show a confirmation message to the student. The text box, both

28

before and after feedback is submitted, is shown in Figures 3.8 and 3.9.

Clicking on the "suggest an edit" option pops up a modal that allows the student

to make and preview edits to the question, shown in Figure 3.10. At the top of this

modal is a text box, populated with the handx source of the question. Underneath

that are two previews—one that displays the question without its explanation, and the

other that shows the explanation as well. At the very bottom is a checklist which asks

students to verify that their submission is formatted correctly, and buttons to cancel

or submit. This interface is very similar to the one that allows students to submit

MCQs in Questionable, and is thus familiar to at least some of them. Furthermore,

including the two previews and encouraging students to double-check their formatting

should help them avoid formatting errors.

From the home page, if a student chooses to revisit an exercise, they are brought to

a page containing a single exercise. Below it are options to add feedback and suggest

edits. Clicking on either of these results in behavior very similar to that described

above. Once the student is done looking at that exercise, they can go back to the

home page or click on navigation arrows in the header to go to another one of the

questions they have tried before.

Students are forbidden from submitting feedback on or suggesting edits to exercises

for which they have not read the explanation. This is because it is possible for a

student to think the question is wrong when in fact they have a misconception that

the explanation would have corrected. The user interface also prevents students from

submitting a suggested edit without checking all of the items in the formatting checklist.

The alert boxes which appear in these scenarios are shown in 3.11 and 3.12.

29

3.5.2.2 TAs and Instructors

TAs and instructors have the same permissions, so they are collectively be referred

to as staff members for brevity. Staff members have access to several pages devoted

to the administration of the exercise bank. Most staff members start out at a simple

landing page with links to and descriptions of the the other pages. A link to this page

is located at the top right of all of the administration pages, making navigation back

to this page and from there to other pages easy and intuitive.

Staff members must be able to add new exercises to the bank. To do this, they

can visit an add exercises page, which is depicted in Figure 3.13. At the top is a box

that allows a staff member to specify which semester they are interested in taking

submissions from. The default, which is populated upon page load, is last semester.

Below that is a table where each row contains a topic and a status, which is one of

accepted, rejected, or blank. The last of these is used for unreviewed exercises. The

columns each have sorting and filtering capabilities.

Clicking on a row brings the staff member to another page, which allows them to

evaluate an individual exercise. This page is shown in Figure 3.14. Arrows at the

top and bottom of the page allow navigation to the next and previous exercises in a

chronologically sorted order. In the left column is a preview of the exercise, which

updates automatically based on the text in the box below. Much as students can type

handx and preview their changes as they write, as described in Section 3.5.2.1, staff

members can make modifications to the student submission before adding it to the

bank. On the right is information extracted from graders and other students. Any

comments that were provided by the staff member who graded the submission, either

to the student or to other staff members, are shown at the top and labeled as a staff

comment. Below that is a series of cells, each representing a student interaction with the

question. Within each cell are columns of check boxes, where each check corresponds

30

to a correct answer from an attempt to answer the multiple-choice question. To the

right of the check boxes is a comment written by the student about the question. At

the very bottom of the page is a comment box for the reviewer to write their thoughts

about the suitability or unsuitability of the exercise, and buttons to accept or reject it

from the bank.

One an exercise has been added to the bank, it needs to be reviewed and iterated

on. The review exercises page, seen in Figure 3.15, allows staff members to identify

exercises that are most in need of improvement. It consists of a table where each row

corresponds to an exercise. In this row are the question topic, the timestamp of the

most recent review, a list of links to pull requests created by students when they suggest

edits, the number of distinct users that have answered the question, the percentage of

those users that answered it correctly on the first attempt, and the average number

of attempts taken before a correct answer. The last three statistics only deal with

the most recent revision of the exercise. This is because a problematic question, with

low success rates, may be improved substantially after a single revision, and the new

version of question should not receive undue attention.

From the review exercises page, clicking on one of the rows navigates to a page

which allows the user to evaluate a single exercise, pictured in Figure 3.16. On the left

of this page is a preview of the question, which automatically renders the handx source

code in the box below it. The next column contains links to the GitHub repository’s

pull request review pages, and the last column contains comments and checkboxes

representing student attempts to answer the question. At the bottom of the page

are buttons to update the handx of the question, mark the exercise as "reviewed", or

remove the question from the exercise bank entirely (if this happens, the question will

be deleted from the file tree of the Git repository, but its version history will still be

visible).

31

Lastly, a user statistics page presents information about the various users who have

attempted practice questions through the exercise bank. For each user, it lists their

full name, their username, which semesters (if any) when the user was a staff member

of 6.031, the number of readings practiced, total number of questions answered, and

percentage that the user got correct. This page does not facilitate any of the exercise

bank operations, but rather exists so that the maintainers of the exercise bank can get

an overview of how many students are using it and what their patterns of usage are.

32

Figure 3.2: The states, data flows, and operations for fill-in-the-blank exercise questions
after the introduction of the exercise bank system. Contrast this with 1.1.

Figure 3.3: The states, data flows, and operations for submissions to the Questionable
Makeup system after the introduction of the exercise bank system. Contrast this with
1.2.

33

Figure 3.4: An example of the VSCode-based interface for playtesting the exer-
cise Quote-escapeQuotes (see figure 4.4 for the complete metadata) on the branch
testing-himawan. Note the "jump to" box at the upper left, containing the generated
ID of the exercise.

34

Error: YAML error in src/Quote.ts: All collection items must
start at the same column at line 1, column 5:

- id: Quote -escapeQuotes
^^^^^^^^^^^^^^^^^^^^^^...

at parseYAML (upload -exercises.js :927:15)
at upload -exercises.js :980:41
at Array.forEach (<anonymous >)
at loadEmbeddedExercises (upload -exercises.js :975:73)
at loadExerciseFile (upload -exercises.js :958:35)
at loadAndUpdateExercises (upload -exercises.js :1003:19)
at main (upload -exercises.js :1063:15)
at Object.<anonymous > (upload -exercises.js :1077:5)
at Module._compile (internal/modules/cjs/loader.js :1063:30)
at Object.Module._extensions ..js (internal/modules/cjs/

loader.js :1092:10)
at Module.load (internal/modules/cjs/loader.js :928:32)
at Function.Module._load (internal/modules/cjs/loader.js

:769:14)
at Function.executeUserEntryPoint [as runMain]

(internal/modules/run_main.js :72:12)
at internal/main/run_main_module.js :17:47

Figure 3.5: An example email about incorrect indentation in a concept map file. Note
that the problematic filepath, line number and column offset, as well as a preview of
the erroneous section, are provided.

35

Figure 3.6: The home page of the exercise bank, containing a dropdown to choose a
topic, as well as a list of previously-attempted questions, in reverse chronological order.

36

Figure 3.7: The practice page, containing three multiple-choice questions from the
exercise bank. Note that beneath each problem are some options to leave feedback or
directly make suggestions about edits.

37

Figure 3.8: After a student clicks on the "leave feedback" option, a box appears un-
derneath the question.

Figure 3.9: Once a student clicks "submit", the box turns gray and the cancel / submit
buttons disappear.

38

Figure 3.10: A modal box that allows students to suggest edits. At the top is a text
box, populated with the handx source code for the problem. Below it are two previews
that automatically update as the student types—one with and the other without an
explanation showing. At the end is a checklist to ensure that student submissions are
formatted correctly.

39

Figure 3.11: If a student does not attempt a question, they are prevented from making
comments or suggesting edits, and a browser alert appears.

Figure 3.12: If a student does not complete the formatting checklist, they are not
allowed to suggest an edit.

Figure 3.13: The add exercises page.

40

Figure 3.14: A page for an individual exercise which is being considered for addition
to the exercise bank. Student usernames have been blurred out.

Figure 3.15: The review exercises page.

41

Figure 3.16: The page which allows staff members to review a single exercise. Student
usernames have been blurred out.

42

Chapter 4

Implementation

This section discusses the implementations of two exercise banks used in 6.031, for

fill-in-the-blank exercises and student-authored MCQs. Both use Git to store exercise

contents and histories, and use MongoDB to store the current state of the exercises

along with other information that cannot easily be determined using Git. The fill-

in-the blank exercises rely on a webhook that responds to push events to the Git

repository and automatically reflects those changes in MongoDB to facilitate iteration

and debugging. The exercise bank for student-authored MCQs uses a web app written

in JavaScript with a NodeJS backend that uses MongoDB and calls to the GitHub

API.

4.1 Data Storage

Both exercise banks implemented as part of the work of this thesis rely heavily on

Git and on MongoDB for storage. This section discusses our approach and provides

details about the way that these exercise banks organize their data, including directory

structures, schemas, and models.

43

4.1.1 Fill-In-The-Blank Exercises

The data for a fill-in-the-blank exercise is stored in two places. The first is a concept

map containing:

• names of concepts, such as if::else-if, list::length, and return

• levels, which are groups of concepts such as basic, arrays, and functions

• elaborations on tricky parts of each of these concepts, such as places where they

differ from similar concepts in other languages

• tutorials with names, associated concept IDs, and URLs

Excerpts from a concept map can be seen in Figures 4.1, 4.2, and 4.3. The concept

map is edited only when changes to the concepts or tutorials are being made, which

happens relatively infrequently.

The second is an exercise file, consisting of code that will be presented to the student

and some metadata at the top, which specifies the following:

• a name for the exercise

• a list of concepts that it covers

• a prompt to be shown to students that tells them the task they are expected to

complete

• a list of code snippets to be turned into blanks for them to fill

• a list of regexes to match acceptable answers

• a list of regexes which match common incorrect answers, and a hint to show for

each one

44

• an explanation to show to the student to reinforce their understanding after they

complete the exercise

The rate of change of exercise files is likely much greater than that of the concept map.

The most common operations are likely to be adding new exercises, which requires

adding more source files or adding more blanks to existing code, editing an exercise

prompt to reduce confusion, adding additional regexes for other acceptable answers,

and supplying new regexes and hints for common mistakes. All of these leave the

concept map untouched, instead modifying the exercise files.

The concept map and exercise files are stored in a Git repository. This provides

many benefits for simultaneous collaboration and permissions for groups of users.

GitHub also supplies a UI that easily allows for small edits, such as correction of

typos, directly in the browser, as seen in Figure 4.5.

The server that hosts the exercises, however, does not directly use Git as its

database, in part due to efficiency concerns but also because it needs to store informa-

tion aside from the content of the exercises, such as which exercises a given student has

completed. Thus, the server has a clone of the Git repository and a script that parses

the concept map, populates a MongoDB database, and updates the source code for the

exercises. This thesis did not modify this infrastructure and thus will not describe it

in detail.

4.1.2 Exercise Bank for Student-Authored MCQs

The exercise bank for student-authored MCQs similarly uses Git to store the iterations

of its questions. However, the exercise bank is built on top of Questionable [11],

which relies on MongoDB and Mongoose. This section first outlines some relevant

details of the existing MongoDB collections and Mongoose models, then discusses the

45

modifications that support integration with Git and GitHub as well as features that

will be discussed later on in the Implementation section.

Student-authored MCQs are recorded in a questions collection in the Questionable

database. The corresponding Mongoose model, Question, originally had the following

attributes.

• timestamp (required): the Date of submission of the question

• reading (required): the ID of the reading (the topic) that the question deals

with

• handx (required): the string content of the question, written in Handx [6], a

Markdown-like language used to create multiple-choice questions in 6.031

• grader (optional): the user ID of the 6.031 staff member who graded the MCQ

• gradeTimestamp (optional): the timestamp at which the grader graded the sub-

mission

• notesToStudent (optional): notes that the staff grader provided to the student

upon grading

• notesToStaff (optional): notes that the staff grader provided to future graders

about the student’s submission

Note that, in the Questionable database system, the handx field is the content of

the MCQ. Since no user has any opportunity to change student-authored MCQs once

they have been submitted, handx is simply text. However, associating each question

document in Questionable with a file in GitHub would allow a constant exercise identity

to have changing contents, be associated with a version history, and even have several

46

different versions in existence at a time. This thesis accomplishes this by adding

optional filename and handxTimestamp fields.

The filename field is the name of the file in Git that is associated with the ques-

tion. While the implementation could have used some form of UUID, instead the Git

repository aims to be as easily human-readable as possible. This makes the system as

a whole easier to understand, and it allows people to make edits directly through the

GitHub web UI, as pictured in Figure 4.5. The exercise bank implementation divides

the repository into directories, one per reading, and assigns a unique human-readable

name to each file upon its addition to the exercise bank. This assignment is made

by lowercasing the handx text and removing punctutation, then removing commonly-

used words from the stopword Node library [12] and words that appear frequently in

student-authored MCQs, such as "consider the code below" and "select the statements

that best match", and then concatenating the first three words with hyphens as a de-

limiter. If a filename with this name already exists, a number is added onto the end of

the name; this number is incremented until the filename is unique. Once this process

is complete, the entire filepath can be constructed by using the name of the reading

as the directory and the filename field as the name of the file within that directory.

filename is null for all questions that have been submitted but are not part of the

bank. The names of directories and files can be seen in Figure 4.6 and Figure 4.7.

The handxTimestamp is the timestamp of the most recent update to the file on

the main branch. The timestamp is kept up-to-date via a webhook that is notified of

pushes to the exercise bank Git repository.

In addition to the changes described above, which were required to introduce Git

integration, some additional fields were necessary to support reviewing and revising

exercises inside the exercise bank. The fields added to the Question model are as

follows:

47

• reviewStatus: true if the submission was accepted to the exercise bank, false if

it was rejected, null/undefined if there was no decision

• reviewComment: the comment provided by the staff member who reviewed an

exercise, if any

• reviewTimestamp: the timestamp of the most recent review of an exercise

4.2 User Interface Implementation

This section discusses the implementation of the user interfaces for fill-in-the-blank

exercises and the exercise bank for student-authored MCQs, which were discussed in

Section 3.5. It also details some of the more challenging aspects of these implementa-

tions.

4.2.1 Fill-In-The-Blank Exercises

This thesis contributes automatic parsing, error reporting, and serving of draft exer-

cises. This is accomplished by a webhook written in TypeScript that reacts to push

events to a Git repository. When a push to branch branchName modifies the exercise

with ID exerciseName, the webhook parses the changes. If an error occurs, the web-

hook finds the email addresses of the author and committer, then constructs an email

containing the contents of stderr and sends it to them and one of the instructors. If no

error occurs, the webhook creates a new exercise with ID exerciseName@branchName.

The exercise author can then use the fill-in-the-blank exercise interface to playtest the

question. Because of this automated system, previewing an exercise to verify its cor-

rectness no longer requires setting up a local database and development server. It even

allows users to avoid cloning the repository at all. Instead, it is possible to make edits

48

directly through the GitHub UI, which is shown in Figure 4.5. The exercise author

can iterate by editing, committing to an unmerged branch, looking at the exercise, and

repeating until it looks correct. When a branch is deleted from the Git repository, the

webhook reacts by finding all exercises whose IDs end in @branchName and deleting

them from the system. As shown in Figure 4.8, the webhook can be monitored using

the GitHub UI, which lists push events and responses.

4.2.2 Exercise Bank for Student-Authored MCQs

Students and staff members interact with the exercise bank for student-authored MCQs

through a web app. This web app is built using HTML, CSS, and JavaScript. This

section provides an overview of the implementation of the web app. This discussion

divides the pages into two categories: action pages, which display content for one or a

small set of exercises and allow users to perform operations on them, and navigation

pages, which have lists of links to action pages.

The majority of action pages have a URL query parameter specifying an exercise ID.

JavaScript uses this ID to fetch data from the API, then populates the page accordingly.

The user can use buttons and textboxes on the action page to trigger post requests to

the API and modify the exercise. The only exception to this pattern is the practice

page, which presents the student with a set of three exercises. The JavaScript on the

practice page makes a call to the API to fetch the three least-frequently seen exercises

about the topic the student wants to practice, then displays and allows the student to

interact with them.

Each navigation page contains a table consisting of links to action pages and infor-

mation about each one. This additional information helps the user filter, sort, or search

among the action pages to find the ones they need. The navigation page makes a call

to the API to fetch data for each row of the table, then populates the table and makes

49

it visible to the user. The most challenging navigation page to implement was the one

which allows the user to find exercises that should be revised. This page displays the

percentage of students that answered each exercise correctly on the first attempt and

the average number of attempts taken, but only considers statistics for the most recent

version of the exercise. In the first attempt at implementing this page, the backend

queried all attempt data, sent requests to GitHub API to determine the timestamp of

the most recent exercise version, and calculated statistics using JavaScript. However,

this proved to be too time-consuming, and the page did not load because the API

consistently timed out. Adding a handxTimestamp field to the database and using a

MongoDB aggregate query sped up this operation significantly and ensured that this

page was usable.

50

if::else -if
uiLabel: if/else if
/java <-python:

diff: shallow
explanation: <p>Though the structure of
<code >if/else </code > statements is very similar
from Java to Python , it is important to remember
to use curly braces in Java , rather than colons
and indentation. </p><p>Also , where Python uses
the <code >elif </code > keyword , Java uses
<code >else if </code >.</p>

Figure 4.1: An excerpt from the concept map file, showing the if::else-if concept.
- id: basic

uiLabel: Basic TypeScript
conceptIds:

- print
- if
- if::else
- if::else -if

Figure 4.2: An excerpt from the concept map file, showing the Basic TypeScript con-
cept group.

- url: https ://www.tutorialsteacher.com/typescript/
typescript -if-else

title: TypeScript - if else
conceptIds:

- if
- if::else
- if::else -if

source: Tutorials Teacher

Figure 4.3: An excerpt from the concept map file, showing a tutorial for if, else-if, and
else in TypeScript.

51

- id: Quote -escapeQuotes
conceptIds:

- string :: literal :: escape :: quotes
prompts:

- Fill in the blank so that
<code >doubleQuote </code > is a one -character string
consisting of a double -quote character.

explanation: "<p>Just like in Python , single -quote
marks in TypeScript can be used when you need to
write a literal string containing a double -quote;
besides escaping , they are interchangeable .</p>"
blanks:

- code: '"\""'
transformers:

- r/\\//
triggeredHints:

- s/`/ Template literals (<code >`...`</code >)
should be avoided in the cases where there
are no contained placeholders. There is a
simpler way to do this.

Figure 4.4: An example of metadata at the top of an exercise file.

52

Figure 4.5: The GitHub web UI for editing and committing a file.

53

Figure 4.6: Some of the names of GitHub directories in the exercise bank repository

Figure 4.7: The filenames of exercises about the topic of ADTs (abstract data types)

54

Figure 4.8: The webhook information page on GitHub. The push events that are sent to
the webhook are listed in a most-recent-first order. The webhook prints short acknowl-
edgements to confirm successful receipt and processing of branch deletions, pushes to
new branches, and pushes that are not relevant to the fill-in-the-blank exercises.

55

Chapter 5

Evaluation

This section discusses the outcomes of our experiments in deploying the exercise banks

in 6.031: Elements of Software Construction. The exercise bank for fill-in-the-blank

exercises was used to add and modify numerous exercises for use in the course, and the

staff found that the automatic alerts and draft previews were useful.

The exercise bank for student-authored MCQs was used by a large number of

students, and saw an extremely large spike before an exam 6.031 held during the

middle of the semester. Furthermore, it succeeded in generating exercises from a large

number of student-authored MCQs, and also encouraged iteration on practice questions

for the students.

5.1 Fill-in-the-Blank Exercises

Over the course of the spring 2021 semester, two instructors, five TAs and one lab

assistant (LA) worked with the exercise bank for fill-in-the-blank exercises. In total,

the non-instructors made 71 commits, adding 106 new exercises and 62 new tutorials,

and modifying 32 existing exercises and 12 existing tutorials. This helped to balance

56

the work of maintaining the exercise bank between the instructors and other staff

members, in addition to providing a variety of perspectives and ideas to creative tasks

such as exercise design.

Further, the exercise bank was intuitive for the other staff members to use, so

it is unlikely that the benefits obtained from encouraging contributions from non-

instructors were outweighed by the amount of time spent learning how to use the

system. Additionally, staff members reported that the process for playtesting draft

exercises was smooth and much less arduous than setting up a development server.

One of these staff members reported that they were quite unfamiliar with YAML, and

receiving email alerts was helpful in their debugging efforts.

5.2 Student Practice with Student-Authored MCQs

Student interest in the exercise bank for student-authored MCQs has proven to be

relatively high, especially considering that participation in it is entirely optional. 106

distinct students made 2525 attempts at answering questions in the exercise bank.

Since approximately 250 students took 6.031 this semester, that means that about

42.4% of the class has attempted a question in the exercise bank at least once. This

indicates that students are interested in an exercise bank and are willing to try it out.

Of the 106 students, 38 answered only 1 question, and 32 students have answered

more than one set of 3 questions. These participation statistics seem to indicate that

lots of students have tried the system, but not many of them were interested in actually

completing an activity. However, a substantial number of students have answered

upward of 20 distinct questions in the exercise bank, and one particularly notable

student has answered 106 questions, using 516 attempts total. On average, students

spent 2.5 attempts per question.

57

Figure 5.1 and Figure 5.2, track the number of attempts and unique users over time.

In general, usage is somewhat low but consistent across days. Tickmarks every Sunday

show the relationship between student behavior and the day of the week. Exercise

bank activity seems to be slightly higher during the week than on weekends, but no

other periodic patterns seem to be evident. The large spike in the graph was caused

by Quiz 1, which occurred on 4/5/2021, the day after the peak. Since class is held

at approximately noon Eastern, it is reasonable to assume that many students were

practicing before the exam as well, hence explaining the very high number of users that

day.

Figure 5.1: The number of attempts per day. Tick marks occur every Sunday. The
large spike in the graph is caused by Quiz 1, which occurred on 4/5/2021.

5.3 Facilitation of Exercise Development

Student interest in the exercise bank, and reliance on it especially when it comes to

test preparation, is clear. The following section examines how easy it is to add new

exercises and make adjustments to existing ones.

58

Figure 5.2: The number of users per day. Tick marks occur every Sunday. The large
spike in the graph is caused by Quiz 1, which occurred on 4/5/2021.

5.3.1 Number of Contributors

The exercise bank drastically increased the number of exercise authors through learner-

sourcing. The questions currently in the exercise bank are based on MCQs authored by

165 distinct students. In contrast, the 6.031 staff has about 20 members per semester.

It is evident that a learnersourcing approach is much more scalable and much less

time-intensive for staff members.

Staff members contribute to a question even after its original version is created.

Seven TAs went through student-authored MCQs from previous semesters and added

the ones that they deemed to have enough potential to the bank. They reviewed

641 exercises, of which they rejected 261 and accepted 380. TAs accepted only 177

exercises without modification. The subsequent section, Section 5.3.2, discusses the

changes made to these exercises in more depth. The TAs were able to perform these

tasks with minimal guidance, although there were initially a couple of questions about

the user interface. On the whole, this was a very natural and smooth process.

Furthermore, staff members were not the only ones participating in the revision pro-

cess. Although practicing with the exercise bank in general is optional, and suggesting

an edit is not required in order to continue practice, some students were interested in

59

improving the exercises. Students created 15 pull requests through the suggest-an-edit

feature. These suggestions are analyzed in the next section.

5.3.2 Amount of Change per Exercise

The exercise bank framework aims to make it easy to iterate on exercises but also

encourage this behavior from its users. The difference between the original and most

recent version of each student-authored MCQ determine whether it succeeds in these

goals. Differences, when present, were labeled using the following categories. A format-

ting change involves fixing minor spelling errors or improper handx syntax. A wording

change involves rewriting or reordering a couple of sentences to improve clarity. A

conceptual change involves substantially modifying the structure of the exercise or the

topics that it covers. Figure 5.3 shows an exercise that has undergone all three kinds

of changes. The original version this exercise is displayed to the left of its most recent

version.

The changes made by the TAs are broken down as shown in Figure 5.4. This includes

both changes that were made at the time of an adding an exercise, and changes that

were made later on. Since staff efforts were largely focused on adding new exercises to

the bank this semester, only four changes belong to the latter category. Three of these

are formatting changes, and one is a conceptual change. This last one was made to an

exercise soon after it was accepted without changes, possibly accidentally. Although

these changes are few, they demonstrate that TAs are occasionally willing to make

small tweaks to exercises and add changes to an exercise despite mistakes in the initial

review process.

In contrast, students submitted a very small number of suggested edits. The vast

majority of these were formatting changes, but there were some wording and concep-

tual changes as well. The distribution is provided in Figure 5.5. Additionally, not all

60

What should the be filled in
for the ???? in the
following line of code if we
wanted to add the numbers
0.0, 1.0, and 2.1 afterwards ?

List <???? > nums = new
ArrayList <>();

[] int
[] double
[x] Double
[] Integer

> Since we are explicitly
stating that we want to add
floating point numbers we

have to use the Double class
since it is the wrapper for
the primitive type double.

What should be written in place
of ???? in the following
line of code , if we want to
add the numbers 0.0, 1.0,
and 2.1 to the List ‘nums‘ ?

‘ List <????> nums = new
ArrayList <>(); ‘

[] int
[] Integer

[] double
[x] Double

> Since we want to add floating
point numbers , we can’t use
‘int‘ or ‘Integer‘ .

> In Java, generic type

arguments (including types
inside of angle brackets in

List declarations) must be
reference types, not
primitives. Thus, we have to

use the `Double ` class , the
wrapper for the primitive
type ‘ double ‘ .

Figure 5.3: An example of formatting, wording, and conceptual changes. On the left,
the original handx source code. On the right, the revised version. Orange is used for
formatting changes, yellow for wording changes, and blue for conceptual changes. Line
breaks have been added to aid in comparison of the texts.

61

Figure 5.4: Changes made by TAs.

of the suggestions were accepted. The three rejected wording suggestions proposed

the expansion of abbreviations or the addition of redundant information. While it

is true that these changes may have helped the suggesters understand the question,

they slightly decreased the quality and readability of the exercise for those familiar with

commonly-used software engineering shorthand. It is worth noting that the small num-

ber of suggestions in general, and the low numbers of wording and conceptual changes,

might be partly because TAs edited questions before students looked at them. This

data indicates that students successfully find small problems that TAs have overlooked,

and sometimes even correct larger issues.

TAs and students together made significant changes through the exercise bank.

In fact, most of the exercises were modified at some point. The majority of changes

were relatively minor, but the rates of of rewording and conceptual changes are also

promising. This data indicates that making changes to exercises is a natural part of

the exercise bank workflow.

62

Figure 5.5: Changes made by students.

63

Chapter 6

Conclusion

This thesis presented the exercise bank framework, which aims to facilitate creation

and revision of practice questions to provide to students. Notably, it provides a con-

ceptual model which depicts an exercise as an object that transitions between dif-

ferent states—reflecting different steps in the initial writing and subsequent iteration

phases—as its contents change. Two implementations of the exercise bank framework

were deployed in MIT’s 6.031: Elements of Software Construction, an intermediate

programming course with approximately 250 students per semester. The exercise bank

was used heavily by students for test preparation, and even used outside of that, likely

to help reinforce concepts from lectures and readings. The exercise bank was also

successful in facilitating exercise authorship and iteration. The set of people who con-

tributed to the exercise bank, through writing MCQs or suggesting edits, expanded

from just two instructors to nearly 200 students and staff members. These contribu-

tors added much more exercise content and made substantial revisions to it in just one

semester.

64

6.1 Further Work

Further improvements to the exercise bank can still be made. In regards to fill-in-the-

blank exercises, staff members currently cannot easily determine which concept areas

and exercises may be in need of improvement. Building a tool in order to figure out

which concepts have very little coverage, which exercises have low correctness rates,

or which incorrect answers are particularly common—thus allowing staff to supply

hints and tutorials to correct those misunderstandings—might prove to be useful. The

automatic email alert system could also be improved. Staff members expressed that

the error messages were not easy to understand, and that there were sometimes large

delays between an error being detected and an email being received.

In the domain of student-authored MCQs, publish and unpublish are currently

the same as add and remove for the sake of simplicity. It might be helpful to tem-

porarily prevent an exercise from being seen by students while it was worked on, rather

than removing it entirely. Furthermore, accesses to GitHub are performed by using a

Personal Access Token, which causes some information about the actual identity of the

committer to get lost. The exercise bank UI could instead require staff members and

students to log in with GitHub before performing operations. Additionally, the system

which automatically generates names is somewhat flawed. The reader may recall that

it selects keywords from the handx source after removing stopwords, but unfortunately

it does not prevent the same word from being selected more than once, which led to

the unfortunate filename of music-music-music.

Lastly, it is difficult to receive feedback from students about either of these exercise

banks. Over the course of this semester, a couple of students posted about it on

Piazza, a multipurpose ask-and-answer forum that is used for other queries in 6.031,

but it would be much better to actively elicit feedback to find areas for potential

65

improvement.

66

Bibliography

[1] Mohammad Allahbakhsh et al. “Quality Control in Crowdsourcing Systems: Is-

sues and Directions”. In: IEEE Internet Computing 17 (2 2013), pp. 76–81. doi:

https://doi.org/10.1109/MIC.2013.20.

[2] Philip C. Candy, Gay Crebert, and Jane O’Leary. “Developing Lifelong Learners

through Undergraduate Education”. In: (1994).

[3] Paul Denny, Diana Cukierman, and Jonathan Bhaskar. “Measuring the effect of

inventing practice exercises on learning in an introductory programming course”.

In: Proceedings of the 15th Koli Calling Conference on Computing Education

Research (2015), pp. 13–22. doi: https://doi.org/10.1145/2828959.2828967.

[4] Paul Denny, John Hamer, and Andrew Luxton-Reilly. “PeerWise: Students Shar-

ing their Multiple Choice Questions”. In: Proceedings of the Fourth international

Workshop on Computing Education Research (2008), pp. 51–58. doi: https:

//doi.org/10.1145/1404520.1404526.

[5] Elena L. Glassman et al. “Learnersourcing Personalized Hints”. In: Proceedings

of the 19th ACM Conference on Computer-Supported Cooperative Work & Social

Computing (2016), pp. 1626–1636. doi: https://doi.org/10.1145/2818048.

2820011.

67

[6] Max Goldman. Markdown handouts + exercises. GitHub repository. 2016. url:

https://github.com/maxg/handx.

[7] Judy Hardy et al. “Student-Generated Content: Enhancing learning through shar-

ing multiple-choice questions”. In: International Journal of Science Education 36

(13 2014), pp. 2180–2194. doi: https://doi.org/10.1080/09500693.2014.

916831.

[8] Neil T. Heffernan et al. “The Future of Adaptive Learning: Does the Crowd Hold

the Key?” In: International Journal of Artificial Intelligence in Education 26

(2016), pp. 615–644. doi: https://doi.org/10.1007/s40593-016-0094-z.

[9] Juho Kim. “Learnersourcing: Improving Learning with Collective Learner Ac-

tivity”. PhD thesis. Massachusetts Institute of Technology, 2015. doi: https:

//doi.org/1721.1/101464.

[10] Agnes Koschmider and Mario Schaarschmidt. “A Crowdsourcing-Based Learning

Approach to Activate Active Learning”. In: DeLFI & GMW (2017).

[11] Chungmin Lee. “Question GenerationWorkflow: Incorporating Student-generated

content and Peer Evaluation”. MA thesis. Massachusetts Institute of Technology,

2020. doi: https://doi.org/1721.1/127480.

[12] Fergie McDowall and Espen Klem. stopword. NodeJS Package Documentation.

2015. url: https://www.npmjs.com/package/stopword.

[13] Piotr Mitros. “Learnersourcing of Complex Assessments”. In: Proceedings of the

Second (2015) ACM Conference on Learning @ Scale (2015), pp. 317–320. doi:

https://doi.org/10.1145/2724660.2728683.

[14] Casey O’Brien, Max Goldman, and Robert C. Miller. “Java tutor: bootstrapping

with python to learn Java”. In: Proceedings of the first ACM conference on Learn-

68

ing @ scale conference (2014), pp. 185–186. doi: https://doi.org/10.1145/

2556325.2567873.

[15] Henry L. Roediger III and Jeffrey D. Karpicke. “Test-Enhanced Learning: Taking

Memory Tests Improves Long-Term Retention”. In: Psychological Science 17.3

(2006), pp. 249–255. doi: https://doi.org/10.1111/j.1467-9280.2006.

01693.x.

[16] Dominique M.A. Sluijsmans et al. “The Training of Peer Assessment Skills to

Promote the Development of Reflection Skills in Teacher Education”. In: Studies

in Educational Evaluation 29 (2003), pp. 23–42. doi: https://doi.org/10.

1016/S0191-491X(03)90003-4.

[17] Darya Tarasowa et al. “CrowdLearn: Crowd-sourcing the Creation of Highly-

structured e-Learning Content”. In: Proceedings of the 5th International Con-

ference on Computer Supported Education 1 (2013), pp. 33–42. doi: https :

//doi.org/10.5220/0004384100330042.

69

