
ScreenMatch: Providing Context
to Software Translators by
Displaying Screenshots

Geza Kovacs
MIT CSAIL
32 Vassar St, Cambridge MA
02139 USA
gkovacs@mit.edu

Copyright is held by the author/owner(s).

CHI 2012, May 5–10, 2012, Austin, TX, USA.

ACM 978-1-4503-1016-1/12/05.

Abstract
Translators often encounter ambiguous messages while
translating software. To resolve ambiguity, the translator
needs to understand the context in which the message
appears. Currently, context is provided via textual
descriptions, or not at all. This paper describes
ScreenMatch, a system which provides translators with
visual context for each translatable message. It does so by
matching each message with a corresponding screenshot
of the application. ScreenMatch consists of a tool to
gather screenshots, an algorithm to match messages to
screenshots, and an interface that presents translators
with screenshots alongside messages. We evaluated the
system by gathering screenshots for 3 applications, using
the algorithm to match messages to screenshots, and
comparing results to manual matches. We found that
hard-to-reproduce error messages make it difficult to
gather all the screenshots. The algorithm correctly
matched messages to screenshots 80% of the time when a
corresponding screenshot had been gathered.

Keywords
internationalization, translation, ocr, text matching

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces]:
Computer-supported cooperative work.



Introduction
The software translation process begins with the developer
marking strings in the source code as being translatable.
These strings are called messages – translatable units of
text, such as labels or tooltips. The developer then runs a
tool that generates, for each language, a message file – a
file containing a list of messages and placeholders for
corresponding translations. The message files are then
sent to the translators, who use a tool such as Gtranslator
to view the messages, and fill out the translations.

User interfaces are full of ambiguous messages which can
have different meanings depending on the context they
are being used in. For example, “Open Door” can be
either a command (Please open the door) or status
notification (The door is open). When translating to a
foreign language, these different meanings may correspond
to different phrases – hence, the translator will need to
know the context the message was used in, in order to
determine the correct translation.

Translation tools currently provide little context to
translators – they display only the message itself, and any
comments that are present in the message file. Comments
are often automatically added during the process of
generating the message file, to indicate the source of a
message. This sometimes provides some context for the
translator – for example, if the message source is
“cc-printers-panel.c”, the message is presumably related
to printers. Developers sometimes write additional
comments to clarify ambiguous messages, as we can see in
Figure 1. Unfortunately, writing such notes for translators
is a burden on developers, and is only rarely done.

Figure 1: Part of the message file for the Japanese translation
of Gnome Control Center. Contains the message “Open
Door”, comments for translators, and a translation.

Screenshots of the user interface are a source of context
that might be useful to translators. For example, if we see
the message “Open Door” used in a screenshot, appearing
as an informational dialog in the notifications area, it
would be clear that the message is a status notification.

This paper describes ScreenMatch, which is used to
provide context to translators by showing screenshots. To
use the ScreenMatch system, the developer first gathers
screenshots for the application. Each message is then
algorithmically matched to a screenshot illustrating its
usage. When the translator translates the application, the
corresponding screenshot will be shown alongside each
message.

Related Work
Facebook Translations 1 and Qt Linguist 2 both provide
translators with visual context – however, their approaches
differ from ScreenMatch’s screenshot-based approach, and
are less generally applicable.

Facebook Translations uses the approach of allowing users
to translate the site while using it. Because the translators
are translating the website in the process of actually using
it, they are able to see the context in which the text is
being used. Having users translate software while using it,

1http://www.facebook.com/apps/application.php?id=4329892722
2http://developer.qt.nokia.com/doc/qt-4.8/linguist-

translators.html



however, is a radical departure from the traditional model
of software translation, and does not fit in well with the
message-by-message translation workflow used by
professional translators. Furthermore, translators need to
make a conscious effort to discover all the translatable
text, and it is not apparent which parts of the application
still need to be translated. Additionally, this approach
requires the ability to determine the widget that was
clicked and its associated text – information that is readily
available via the Document Object Model (DOM) for web
applications, but which cannot be obtained from desktop
or mobile applications.

For software whose GUI was constructed using the Qt
Designer interface builder (which creates a UI file, a file
that declaratively describes the layout and forms in a
window), Qt Linguist will show translators a preview
generated from the UI file, for messages which originated
from a UI file. One limitation of this approach is that the
visual context can only be shown if the message originated
from a UI file built using Qt Designer. Another limitation
is that because the preview of the UI is generated from
the UI file rather than from the running application, it
may bear little resemblance to how it actually looks like in
the application – particularly if there is much
programmatic manipulation of the interface.

Thus, unlike the approach used by Facebook Translations,
ScreenMatch’s message-file-centric approach fits well with
existing translation workflows. Unlike Qt Linguist, the
visual context is generated from the running application,
and hence is also available for interface components built
outside the interface builder. Finally, unlike both Qt
Linguist and Facebook Translations, ScreenMatch is
toolkit and platform-independent, because screenshots
can be taken of any user interface.

Similarly to our work, Prefab (Dixon 2011) also extracts
translatable text from the pixel representation of user
interfaces. However, we use the text extracted from the
user interface for a different purpose – whereas Prefab
sends it to a machine translation service to translate the
application in-place, ScreenMatch uses it to assist
software translators.

Implementation
ScreenMatch consists of 3 components:

1. A tool to gather screenshots (Screenshot Gatherer)

2. A program to match messages to screenshots
(Matcher)

3. An interface for translators that presents
screenshots alongside messages (Translation Editor)

To use ScreenMatch, the developer first obtains all the
screenshots using the Screenshot Gatherer. These
screenshots, and the message file, are then supplied to the
Matcher, which outputs an annotated message file, which
contains, for each message, the screenshot which best
matched the message. This annotated message file is then
supplied to the Translation Editor, which displays the
best-matching screenshot for each message, with the
matching region highlighted.

Screenshot Gatherer
The Screenshot Gatherer assists a developer in gathering
screenshots for the application. The developer supplies
the Screenshot Gatherer with a message file, and it takes
screenshots while the developer uses an application,
attempting to ensure that all translatable messages are
included in at least one screenshot. The Screenshot
Gatherer is not necessary to use ScreenMatch – one could
gather the screenshots manually – however, it is useful



because it automates the process of taking and saving
screenshots, and provides feedback on the progress by
indicating which messages still need a matching
screenshot.

The Screenshot Gatherer constantly takes screenshots of
the current active window. Each time a screenshot is
taken, it uses the Optical Character Recognition (OCR)
engine from Sikuli (Yeh 2009) to determine what text
appears in the screenshot. Then, it matches the messages
to the OCR-ed text, to see which messages appear in the
screenshot. If the current screenshot contains a new
message which wasn’t present in any existing screenshots,
it will be saved. As shown in Figure 2, messages which
haven’t been matched are listed, grouped according to the
source indicated in the message file (which roughly
correspond to dialogs). This allows the user to easily
determine when they have gathered all screenshots for a
dialog (or if they missed part of a dialog).

Figure 2: Screenshot Gatherer – screenshot of active window
is on left, matched messages are on the rightmost column,
messages that need to be found are in the center column

Message-Screenshot Matcher
The Matcher program is supplied with a message file, and
a list of screenshot files. It annotates the message file,
matching each message to a screenshot.

The Matcher first uses OCR to extract a list of words in
each screenshot. Then, for each message, the longest
common subsequence is computed between the message
and every subsequence of words in every screenshot. The
match score is the length of the longest common
subsequence, divided by the length of the longer of the
two strings.

It is necessary to match against substrings of the OCR-ed
text, because it is difficult to accurately determine how
the words should be grouped together. For example, if the
screenshot contains “Updates are ready to be installed.”
followed by “Install now?” on the next line, this could
either correspond to one message that is wrapped across
two lines, or two separate messages on separate lines – we
need to try matching against both possibilities.

If there is little whitespace separating the matched
substring from nearby text in the screenshot, a penalty is
applied to the match score. This ensures that individual
words don’t get picked out and matched from a larger
body of text. For example, if we are attempting to match
the message “Web” and there is one screenshot containing
“Web” in isolation, and another screenshot containing
“Web Browser”, then “Web” in isolation will be preferred.

Some messages contain placeholders which may be
substituted by different text at runtime. For example, the
message “Install %s now?” might appear in the
application as “Install Firefox now?’. Because the
substituted text can be arbitrarily long, we use a modified
version of the longest common subsequence algorithm,



which does not count substituted text in the total length,
on such messages.

Once match scores have been calculated for a given
message, the highest one is selected, and if it is above the
threshold, then the message is matched to the screenshot.

Translation Editor
Translation Editor takes the annotated message file
generated by the Matcher, and displays the matched
screenshot alongside each message (see Figure 3). We
envision that this functionality will eventually be
integrated into existing translation tools like Gtranslator.

Figure 3: Translation Editor – Screenshot is shown above,
with the matching portion highlighted.

Evaluation
To evaluate the accuracy of the Matcher, we gathered
screenshots for three different applications, and performed
the matching between messages and screenshots manually.
These screenshots and the message file were then

provided to the Matcher, and the results of the manual
matching and algorithmic matching were compared.

The three applications used for evaluation were the
Gnome Control Center, the XFCE Terminal Emulator, and
the PCManFM file manager. These particular applications
were chosen because they represent a diverse set of
application types, and their message files are readily
available.

We first gathered the screenshots for the three
applications, using the Screenshot Gatherer. The
screenshot gathering procedure took about two hours for
the Gnome Control Center, and about one hour for each
of the other two applications.

Not all of the screenshots for the applications could be
gathered. Of the messages which did not appear in any
screenshots, many were hard-to-reproduce error messages.
Other reasons for missing messages were related to the
machine configuration. For example, about 100 of the
missing messages for Gnome Control Center corresponded
to a fingerprint reader configuration window, which was
inaccessible as we did not have access to a fingerprint
reader.

Surprisingly, some of the messages we could not find
screenshots for turned out to be generated from dead
code – for example, a tab had been removed from the
Gnome Control Center, but the patch which removed it
had forgotten to remove associated lists of options.

Figure 4: Messages for which screenshots could be gathered.



We then performed matching between the messages and
screenshots manually. For each message, we listed which
screenshots, if any, illustrated the message in use. The
Matcher was then used to match each message to a
screenshot. The match could be one of the following:

• Correctly matched: The message was matched to a
screenshot which had been manually listed.

• False positive: The message was matched to a
screenshot which had not been manually listed.

• False negative: The message was not matched to
any screenshot, though it had appeared in a
screenshot.

Among the messages that were represented in the
screenshots, 80% overall were correctly matched. Many of
the false negatives corresponded to bold text, or text on
backgrounds (window decorations or buttons), which the
OCR system wasn’t able to read correctly. These types of
errors could be reduced by retraining the OCR system on
computer screenshots. Many of the false positives resulted
from similar messages. For example, the XFCE Terminal
Emulator message file contains both “ Copy” and “Copy”.
However, both appear as “Copy” in the interface – the
underscore in “ Copy” indicates that the shortcut is
Ctrl-C, and is only rendered as an underline under the C,
which is ignored by the OCR system.

Figure 5: Breakdown of matched messages.

Conclusion
We have built ScreenMatch, a system which provides
translators with a screenshot illustrating how the message

being translated appears in the software. As we have seen,
matching messages to screenshots using only the English
text extracted from the screenshots via OCR works
reasonably accurately. The primary difficulty encountered
is reliably gathering all the screenshots for the application.

As seen from the inaccessible fingerprint reader
configuration window in Gnome Control Center, and
unreproducible error messages, one may need to perform
screenshot gathering on various machine configurations to
get all the screenshots. Thus, crowd-sourcing the
screenshot gathering process to users may be more
effective in achieving complete coverage of screenshots.

In addition to the translation application we have
described, this system could also be used for identifying
dead code. Namely, if a message cannot be found in any
screenshot, this would suggest that the code it was
generated from is never executed. Identifying and
removing this dead code could make the codebase more
robust, and reduce the burden on translators, as they
would no longer need to translate these messages.

Acknowledgements
This work was made possible by Tsung-Hsiang Chang’s
assistance with using Sikuli, and Professor Robert Miller’s
mentorship.

References
[1] Dixon, M., Leventhal, D., and Fogarty, J. Content and
Hierarchy in Pixel-Based Methods for Reverse Engineering
Interface Structure. CHI 2011, 969-978.

[2] Yeh T., Chang, T., and Miller, R. Sikuli: Using GUI
Screenshots for Search and Automation. UIST 2009,
183-192.


	Introduction
	Related Work
	Implementation
	Screenshot Gatherer
	Message-Screenshot Matcher
	Translation Editor

	Evaluation
	Conclusion
	Acknowledgements
	References

