Addressing Misconceptions About Code with
Always-On Programming Visualizations

Tom Lieber Joel Brandt Robert C. Miller
MIT CSAIL Adobe Research MIT CSAIL
Cambridge, MA USA San Francisco, CA USA Cambridge, MA USA
tom@alltom.com joel.brandt@adobe.com rcm@mit.edu
ABSTRACT 2 calls function fetch(id, callback) {
We present Theseus, an IDE extension that visualizes run- :: j_[[;j:i.lzznc"" gl
time behavior within a JavaScript code editor. By displaying
real-time information about how code actually behaves dur- 2 calls stream.on(» function (data) {
ing execution, Theseus proactively addresses misconceptions " o il
by drawing attention to similarities and differences between v
the programmer’s idea of what code does and what it actu- stream.on(, function () {
ally does. To understand how programmers would respond . wallback({mull, sl1beta);
to this kind of an always-on visualization, we ran a lab study 0
with graduate students, and interviewed 9 professional pro- 1cal @ stream.on(, function (err) {

grammers who were asked to use Theseus in their day-to-day
work. We found that users quickly adopted strategies that are
unique to always-on, real-time visualizations, and used the
additional information to guide their navigation through their
code.

Author Keywords
Programming; debugging; code understanding

ACM Classification Keywords
D.2.5. Software Engineering: Debugging Aids

INTRODUCTION

Programmers are often wrong about what code actually
does [5]. This causes them to generate incorrect hypotheses
while reading, writing, and debugging code, to waste time
and energy investigating false leads, and to introduce new
bugs while modifying code [9, 16]. We hypothesize that pro-
grammers often have these misconceptions because code be-
havior is invisible most of the time. Few debugging interfaces
are designed to be left on and visible during all phases of pro-
gramming. Instead, the programmer must request informa-
tion explicitly, for example by opening an inspector, setting
a breakpoint, or inserting a print statement. This means that
a faulty mental model is corrected only by applying it during
debugging. We believe that programmers would benefit sub-
stantially from tools that proactively work toward correcting
misconceptions.

Our solution is a code editor extension called Theseus (Fig-
ure 1). Theseus visualizes the program’s run-time state using

Submitted to CHI 2014

callback{err);

I3

return stream;

Log
fetch (stream.js:23) 1:08:55543 id=1 callback =p Function returnva
('data’ handler) (stream.js:27) 1:0&55.567 data=p [Buffer:512] @ th
('data’ handler) (stream.js:27) 1:0R&:56.038 data =p [Buffer512] @ th
fetch (stream.js:23) L08:55548 id=2 callback =p Function returnva

® (‘error' handler) (stream.js:35 L:0B:5675 err = "connection failed"

Figure 1. Theseus shows call counts for every function, and an asyn-
chronous call tree allows the user to see how functions interact. In the
log above, users can see which call to fetch corresponds to the failure
without adding any debugging-specific code or instrumentation.

code coloring and marginal notes, allowing the programmer
to perceive that information unobtrusively as they read the
code. A function body that has not been executed at all is
shown with a gray background, and functions that have been
called repeatedly are labeled with the call count. The colors
and call counts update in real time so that the user can watch
them respond to the actions they take in their program. Click-
ing on one of those call counts adds an entry to a log show-
ing the arguments and return values of every call, retrieved
from a program trace. Theseus organizes the log entries into
a call tree that accounts for asynchronous invocations (such
as event handlers), allowing programmers to quickly answer
many time-consuming reachability questions [9].

In order to test whether these tools would help correct mis-
conceptions more quickly, we ran two studies and deployed
Theseus as an extension to the Brackets IDE!. Participants
in the first lab study performed programming tasks with and

1http://brackets.io

mailto:tom@alltom.com
mailto:joel.brandt@adobe.com
mailto:rcm@mit.edu
http://brackets.io

without Theseus active. Theseus users identified the loca-
tions where chains of callbacks broke down more quickly
(often within seconds of opening a file) than users with just
a breakpoint debugger, and exhibited behaviors such as ar-
ranging their desktop so that they could see their code while
interacting with their application.

In the second study, professional software developers used
Theseus in their day-to-day programming activities. We then
interviewed them to see how Theseus fit into their program-
ming workflow.

The contributions of this paper are:

e An always-on, zero-click interface for displaying program
execution information in the context of the programmer’s
source code. This interface helps the programmer keep
their idea of how their code executes consistent with what
is actually implemented.

e An event-oriented summary of program execution that en-
ables one-click filtering of execution data and navigation
of source code.

e An efficient approach for collecting, storing, and query-
ing execution trace data that does not require modifica-
tion of the runtime, and that works with multiple concur-
rent execution environments (e.g. both a client and server
JavaScript virtual machine).

e Results from two studies which suggest that Theseus helps
keep the programmer’s idea of what their code does from
diverging from what it actually does during development.

In this paper we will introduce related work, describe the in-
terface and implementation, then discuss the results of our
two studies.

RELATED WORK

Theseus’s interface was informed by research into the types
of questions programmers ask while programming [9, 16], in-
formation foraging theory [3], as well as our observations of
the tasks JavaScript programmers seem to find difficult or te-
dious. Some of the most relevant research, and its relationship
to Theseus, is described in this section.

In his essay “Learnable Programming”, Bret Victor outlines
several of the features he believes a learnable programming
environment and language should have, with control flow vi-
sualizations among them [17]. He presents an always-on in-
terface that displays domain-specific representations of in-
termediate values alongside the code. DejaVu is a similar
project whose domain is real-time video processing [7]. De-
jaVu associates the values of variables with the frame of video
being processed so that users can inspect them by scrub-
bing to problematic points of the video. Widgets displaying
those values are placed on a canvas among drawings and in-
termediate versions of the images being processed. Block-
based programming environments like Scratch and Scheme
Bricks highlight code as it executes, which can help users
draw correspondences between the code and program behav-
ior, though not after the code has finished [14, 6].

traceGL allows the user to see a zoomable visualization of the
entire program trace, updated in real time [1]. After selecting
a location in the trace, the user can can navigate the code,
which is annotated colors to indicate what was executed, and
examine the values of expressions by hovering over them with
their mouse. Theseus’s always-on visualizations are similar,
but focused on summarizing all past behavior instead of in-
specting individual slices of time.

Reacher [10] answers reachability questions by presenting a
compact graph representation of the interactions between sev-
eral functions. Reacher uses static analysis to generate the
graph, whereas Theseus displays examples which have ac-
tually occurred. Thus, Reacher can answer questions about
what can happen, and Theseus can answer questions about
what the user has just seen happen. Theseus and Reacher
provide complementary views of the same kind of informa-
tion.

Whyline [8] is a debugging interface that users can ask ques-
tions like, “Why is this widget blue?” Whyline answers this
question by generating a program slice of all the events that
determined the line’s color. The goal of Theseus is to make
the programmer more aware of how their program is execut-
ing, even when there is no program output about which to ask
questions.

The idea of adding edges to the call graph to aid debugging
goes back to ZStep [11], an omniscient step debugger. A
ZStep user could step to the point when a given expression
was evaluated, to the next time the GUI changed, or to when
a particular screen element was drawn. IntelliTrace [13] is
similar in that it allows users to index into a program trace
by selecting an event, such as a button click or an exception.
In addition, some effort has been made to generate JavaScript
stack traces that cross event boundaries [15], and more gen-
erally across client-server boundaries [12].

Timelapse offers self-contained, fully-replayable traces of en-
tire web pages within WebKit browsers [2]. Theseus records
program traces using source rewriting, which does not re-
quire modification of the virtual machine, but cannot per-
fectly recreate past machine states.

THESEUS’S INTERFACE DESIGN

The design goal for Theseus is to put the results of program
execution at the fingertips of the programmer. The program-
mer is intended to leave Theseus running during all stages of
development—from empty file to finished product.

In this section, we demonstrate a few of the ways that The-
seus’s always-on visualizations allow the user to quickly per-
form sanity checks of their code’s behavior, and how those
same visualizations serve as warnings when the code starts to
act differently than intended. Note how Theseus’s visualiza-
tions allow the user to do all this without leaving the editor,
adding any instrumentation, or even manipulating a debug-
ging interface.

Scenario: A Network Activity Indicator
In this scenario, Samantha is creating an animated widget to
appear during network operations on an HTML page.

A sanity check

Samantha starts by sketching the functions she’ll need:
a function that creates an instance of the widget, called
Activity, and a function to test the widget’s operation as
soon as the page loads.

After writing only the definitions of the widget constructor,
and registering an empty callback function for when the page
finishes loading, Samantha opens the page in a browser. The
code coloring in her text editor immediately shows her that
the code was parsed successfully (no syntax errors) and that
the page load callback was registered and called correctly.

0 calls function Activity() {

}.

1 call % (document) .ready (function ()

I3

When editing static HTML and JavaScript files, her IDE will
automatically reload the browser after every save, so sanity
checks like these are quick to make.

After writing some code to add the activity indicator to the
DOM (Document Object Model), she saves the file and again
gets immediate feedback that both functions were called and
neither threw an exception.

1 call function Activity() {
¥
1 call % ({document) .ready(function () {

4 (document. body) . append (Activity())
b i

I3

Understanding timing

Some time later, Samantha wants to update the DOM period-
ically to create the animated effect. Even before adding any
code to the function to update the page, she can judge whether
the timer is appropriately configured by how quickly the call
counts change in the sidebar.

1 call function Activity() {
var d = $(L
for (var i = 0; 1 < 10; i++) {
5) .appendTo(d) .text(Vi
¥
54 calls setInterval(function ()
P, 308);
return d;
¥
1 call % ({document) .ready(function () {

% (document.body) . append (Activity());
k)i
The call count which currently reads ‘54’ increments by 1 every 300
milliseconds.

Verify that the timer clears appropriately

Samantha adds a conditional statement that should cancel the
timer when the activity indicator’s DOM element is removed
from the page. She verifies that it works correctly just by
watching the call counts.

1 call function Activity() {

var d = $() H
for (var 1 = 8; i < 108; i++) {
&) .appendTo(d) . text().css{{ color: 1 =
¥
10 calls var timer = setInterval{function () {
d.find() .prependTo{d);

if (!$.contains{document.documentElement, d[8])) {
clearInterval(timer});
1;
b, 300);
return d;

¥

1 call %(document) . ready{function () {
var indicator = Activity();
$(document.body) .append({indicator);indicator
1 call setTimeout(function () {
indicator.remove() ;
b, 3008);
I9H
After 3 seconds, the activity indicator was removed from the page and
the timer’s call count stopped at 10.

Summary

Throughout the implementation of this widget, Samantha was
able to verify that the behavior of the code worked before
she had added any code that would modify the page. The
only time Samantha had to look at the web page was to verify
its appearance. Having evidence of the program’s execution
in the code editor saved Samantha from needing to switch
applications until there was actually something on the page
to see. In this scenario, Samantha never had to interact with
the debugger directly. No clicks or keystrokes were made
solely for the sake of debugging.

Retroactive Logging
In this scenario, Samantha is working on a Node.js program
to count the total number of lines in all the files in a directory.

She starts with a sanity check. She verifies that she is using
fs.readdir—the function for listing directory entries—
correctly by calling it with an empty callback. When she runs
the program, she sees that the callback is called, and by click-
ing on the call count, the log is populated with the values of
the arguments to the function. Convention dictates that the
first argument is an object encapsulating any error (so it be-
ing null is a good sign), and expanding the array allows her to
see that the files she expects to find are there.

var fs = require(

(dcall) function rwc(path, callback) {
(mtcall) fs.readdir(path, functien () {

13
I+

0 calls rwe (, function (size) {
console. log(, size);
i
Log

W (anonymous) (rwejsd) 10243547 arguments[0] = null arguments[1] = ¥ [Array:17] Backtrace
0 = " gitignore"
1 = "Gemfile"

11 = "log
12 = "public”

13 = "script”

14 = "test"

15 = "tmp"

16 = "vendor”

2 = "Gemfile.lock”
3 = "README.rdoc"

6 = "config"

Samantha continues coding, running the program periodi-
cally to verify that the call counts make sense and that no
exceptions are being thrown. She eventually notices a dispar-
ity: the add function, which gathers results, is being called
fewer times (133) than the function that iterates over directory
entries (140).

133 calls) var add = function (size) {
totalSize += size;
if (++count === totalCount) {
callback(totalSize);
I;
i

S

:48(:a||5,l fs.readdir(path, function (err, filenames) {
totalCount = filenames. lcn\:-_:h;\
filenames. forEach(function (filename) {
fs.stat(path + + filename, function (err, stats) {
if (stats.isDirectory()) {
rwe (path + + filename, add);
} else if (stats.isFile(}) {
add (stats.size);

140 calls)
140 calls)

She is faced with a difficult reachability question: find calls
to the filename iterator callback that do not result in a call to
the add function—either directly, or asynchronously.

Breakpoints don’t work here because she cannot step
into the fs.stat callback, and there would be 140 in-
stances to step through besides. Naively adding log
statements like console.log("in iterator") and
console.log("in add") wouldn’t work because it
would be very difficult to find corresponding entries. Her so-
lution is to use Theseus’s log.

She clicks the call count next to the file entry iterator callback
and the call count next to the add function. A log appears that
looks like this:

‘.-annmmmlgw j19 1203584 filename = "app” arguments[1] =5 arguments[2] = » [Array:l7] Backirace >

‘.\annm-mnus;l jol 1203585 filename = "assets” arguments[1] =0 arguments[2] = > [Array:6] Backirace

anonymous) (rwejsl9) 12035879 filename = “images’ arguments[1] =0 arguments[2] = > [Array3] Backtrace +

‘ nonymous) (rwe.js:L 1203589 filename = "railspng” arguments[1] =0 arguments[2] = [Arrayil] Backtrace
| @ add (rwe js: 12035903 size = 6646 Backtrace
‘ @ add (rwcjs7) L203O shae = 6646 Backirace s
‘ ®add (rucjsT) 105 shze = 6646 Backirace
| ®dd(rwcjsT) 1amons slze = 6646 Backirace
‘ ® (anonymous) (wcjs15) 1203557 filename = "javascripts” arguments[1] = 1 arguments[2] = » [Array3] Backirace =

nonymous) (w19 120355% filename = “applicationjs’ arguments[1]=0 arguments[2] = » [Arrays] Backirace

dirwejsT) 12035908 size = 622 Backtrace
‘.lannmmm\sw js19 1203589 filename = "home’ arguments[1]=2 arguments(2] = > [Array] Backirace s
| @ (anonymous) (rwc.js: 12035908 filename = "indexjs® arguments[1] =0 arguments[2]=» [Array:l] Backirace s
‘ @ add (rwejsT) 12035908 slze =584 Backirace s
‘ ®add (nwcjsT) 1203598 slze = 584 Backirace+

| ® add (rwe 12035908 size = 2020 Backtrace s
0

Finding calls to the iterator callback that don’t eventually call
the add function can now be easily done by skimming the
log, using the glyphs’ shapes or colors, using the names of the
functions, or using the shapes of the log entries themselves
(add takes fewer arguments, so its lines are shorter).

The desired log entries happen to be clustered here:

| ® (2nonymous) (rwojsl6) 1its52282 filename = "tmp” argun

| @ (anonymous) (rwcjsile) k1ms230l filename = “cache” a

® (anonymous) (rwc.js1 11752322 filename = "assets”
@ (anonymous) (rwe.js1 11752323 filename = "sass"

® (anonymous) (rwejsil6) rimsziol filename = "pids" ar
@ (anonymous) (rwejs:16) 1152301 filename = "sessions”
® (anonymous) (rwcjsil6) rieszan filename = “sockets”

They correspond to the empty directories in the tmp direc-
tory of a Rails project. When she adds a check for empty
directories, the add function’s call count jumps to 140. With
a click she can see that the result looks reasonable:

‘@1call) rwc , function (size) {
console. log(, size);
});
Log
‘ ® (anonymous) (rwcjs:31) L20:35909 size = 295387 Backtrace =

|.c0nsole.lng 120:35909 “total size” 295387

THESEUS IMPLEMENTATION

Module
Loading
oadin node-theseyg WebSocket

Brackets +
Theseus
Node.js

HTTP Requests

Figure 2. System overview. node-theseus installs a module loading
hook that instruments all JavaScript that gets added to the Node.js pro-
cess. node-theseus then connects to Theseus via a WebSocket connection.
When the user requests web pages, the requests are routed through a
proxy server that instruments all JavaScript on the page. Theseus opens

a WebSocket connection to the page to collect instrumentation data from
there as well.

Chrome Remote Debugging API

Theseus consists of an extension for the Brackets editor, two
modules that the extension uses to communicate with Chrome
and Node.js, the JavaScript library called ‘Fondue’ that adds
instrumentation hooks to JavaScript source code, and the
trace-collecting module that gets injected into the programs
being debugged. See Figure 2 for a graphical overview. The
components are described briefly in this section.

Fondue, the JavaScript instrumentation library

Fondue accepts JavaScript source code and returns JavaScript
source code that behaves the same but also records all con-
trol flow information to a global trace object. Functions are
changed to report the arguments received when entered, and
the value returned when they exit.

Function expressions are rewritten so that the invocation at
the top of the stack is recorded upon creation. That invoca-
tion is regarded as the function’s asynchronous parent. When
log entries exist for two invocations that would not otherwise

be connected in a call tree (because neither directly or indi-
rectly called the other), if one is the asynchronous parent of
the other, then they will be joined as parent and child with an
‘async’ flag added to the child’s log entry.

Since objects in JavaScript are mutable, if the trace stored
only a reference to function arguments or return values, their
values might change by the time they were requested by the
debugger. To protect against this, Fondue makes a shallow
clone of all objects that it stores. Memory and accuracy can
be balanced by adjusting the depth of the copy operation,
which is currently set to 1 for objects and 2 for arrays (so
that objects within arrays will be cloned).

Querying the program trace

When Fondue rewrites JavaScript to add the instrumentation
hooks, it also prepends the definition of a global object to re-
ceive the trace data. That global object contains methods for
accessing information such as the locations of function defi-
nitions in all loaded files, the number of times that functions
have been called, and the log entries corresponding to a cer-
tain query. Theseus collects data by polling these functions at
about 10 Hz over one of the connections described next.

Debugging server-side Node.js code

The user runs their code with the command node-theseus
app. Js instead of node app. js. node-theseus installs
itself as a pre-processor of all JavaScript code that is loaded
into that Node.js process. From then on, all code is instru-
mented with Fondue before being executed. node-theseus
then opens a WebSocket server to listen for a debugging con-
nection from Theseus.

Debugging client-side code in Chrome

The Theseus extension starts a web server that serves files
from the user’s project directory, processing any JavaScript
it finds with the Fondue library. When the user opens a web
page from that server, Theseus connects to that Chrome win-
dow using the Chrome Remote Debugging Protocol [4].

EVALUATION 1: LAB STUDY

We conducted a lab study to answer several questions about
how JavaScript programmers would use Theseus on a variety
of JavaScript problems. Specifically, the study was designed
to shed light on the five research questions below. The first
three questions concern the ways in which we think Theseus
would make programmers more efficient:

RQ1. How would programmers find correspondences be-
tween code and program behavior with Theseus?

RQ2. How would programmers use Theseus to find where
chains of callbacks break down?

RQ3. Would programmers use Theseus’s log to sort through
tangled control flow problems?

Methodology

We recruited 7 participants, described in Table 1, to a 90-
minute lab study. Subjects were required to have JavaScript
programming experience. They were given 5 programming

Prog. JS

Subject | Age | Gender | Ability | Ability Uses JS
S1 24 M ce@es | cocc@ Daily
S2 23 M IRY TR ERRRY B Daily
S3 20 M +e@- | --@-+ | Few days/wk.
S4 29 M ser.@ | +-+0- | Few days/wk.
S5 24 M sec.@ | +-+@. | Few days/mo.
S6 21 M sec-@ | --@-+ | Few days/mo.
S7 39 M ses.@ | --@-+ | Notrecently

Table 1. Programming Ability and JavaScript Ability are on a 5-point
scale, with 1 labeled ‘“Novice” and 5 labeled “Expert”.

tasks: two 20-minute tasks and three 5-minute tasks. To fa-
cilitate within-subjects comparison, each participant was as-
signed to the Theseus or control condition for each task in-
dependently (but always with 2 tasks in one condition and 3
in the other). Subjects completed all of their control tasks
first (using Chrome Developer Tools), then all of the The-
seus tasks (during which Chrome Developer Tools were dis-
allowed).

The five tasks were as follows:

A. Canvas Painter (20 minutes). Subjects were given the
source code for a browser-based drawing site with approxi-
mately 2,000 lines of JavaScript spread across 8 files. They
were asked to fix the operation of the drawing tool.

B. du (20 minutes). Subjects were given the skeleton for a
Node.js command-line tool for calculating the total size of
all files in a directory and asked to complete it.

C. Laggy AJAX UI (5 minutes). Subjects were given a web
page with 25 lines of JavaScript for a web page that down-
loaded JSON from the server and displayed it in a popup.
Subjects were asked to determine why it took so long for
the popup to appear. The solution was a delay hard-coded
into the server.

D. Faulty Auto-Complete (5 minutes). Subjects were given
the code for both the server (80 lines of Node.js) and client
(63-line HTML file with embedded JavaScript) of a web
page that showed auto-complete search results from an ad-
dress book. Subjects were asked why the results never dis-
played. The problem was a logic error on the client while
processing the results.

E. Real-Time Chat (5 minutes). Subjects were given the
code for the server (33 lines of Node.js) and client (31 lines
of JavaScript on a web page) of a real-time chat site. Sub-
jects were asked why messages from one window did not
appear in the other. The problem was that the message
name on the client and server was mis-matched.

Task E was selected for RQ2 because it involved broken call-
back chains. Task B exemplified tangled asynchronous con-
trol flow. All of the tasks except B required the user to
discover correspondences between code and behavior on the
page. Because the code was broken in some way in tasks
A, D, and E, users were forced to validate many assumptions
they made about the code.

Subj. | A B C D E Ease Would | Would

of Use Use Recom.
S2 . . v v V | cee@¢ | @ecee | @ecce
S7 B o v . V | ce@ee co@e o cese@®
S5 . . v v | Vv coe@e | co@es ceeec@®
S1 . . v v . cee@e cee@e coe@e
S6 . . v . . ceee@ | coce@ | coc@e
S3 v 9 v . v coe@¢ | coec@ | soce@
S4 Vv v 7 V | V| cee@e | ceee@ | cocec@

Table 2. Summary of study results. The cells in the columns labeled A—E
contain v if the subject successfully completed that task. The cells are
shaded blue if the task was done with Theseus. The correctness of S3’s
solution for task B was unclear, so that cell contains a question mark.
Ease of Use, Would Use, and Would Recommend are on a 5-point scale,
with 1 lowest and 5 highest.

At the conclusion of the study, we verbally asked five ques-
tions regarding their opinion of Theseus. The results will be
presented in the next section.

Results

The results of the study are summarized in Table 2. Be-
cause of the small number of participants, we were unable
to establish any statistically significant relationships between
participants’ success rates and the tools they used. A chi-
squared test found no relationship between using Theseus
and the participant’s ability to complete the tasks successfully
(x3(1, N = 34) = .119,p = 0.73).

RQ1: How might programmers find correspondences be-

tween code and program behavior with Theseus?

Participants frequently sought code correspondences using
Theseus by keeping the call counts and code coloring on the
screen as they interacted with the program they were working
on. They were pleased with how much information they could
absorb this way, an experience S1 described like this: “[The-
seus] feels really interactive. [As opposed to breakpoints], it’s
more of a ‘watch and see what happens’ thing, which I like.”
This behavior was not observed during Tasks B or E, likely
because Task B involved writing a non-interactive command-
line tool and the problem in Task E resided in the logic of
a single function. However, during Task A, S1 and S3 used
this strategy many times (6 times and 3 times, respectively)
during the task. Four of the six participants used this strategy
during Tasks C and D. The only participants who did not use
this strategy on Tasks C and D were S2 and S4, likely be-
cause they spent their first 20 minutes with Theseus working
on Task B, the non-interactive command-line tool.

There was some disagreement about whether the call counts
were useful for finding correspondences when the user had no
idea where to begin. S5 said, “how the call counts changed
live when I interacted with the application ... was especially
useful for Canvas Painter because it was a lot of source code
and I didn’t really know where to start.” As a result, S5’s
rating of whether they would use Theseus outside the study
depended on the size of the project: rated 4 out of 5 if the
code base is large, but only 1 out of 5 if the code base is
small. S1 had the opposite opinion, stating, I felt like it was
the least useful when I wasn’t sure where the problem was.

So in the canvas thing, I didn’t know where the issue was, and
there’s not much of a global scope with Theseus. ... When I
didn’t know where to start, there was no way to find a global
call stack and identify candidate starting points. ... [In short,
Theseus is] more useful on a narrow scope, less useful on a
global scope.”

Participants were interested in the time at which the call
counts changed if they were interacting with their applica-
tion, but also the total number. A changing call count could
alert the programmer to surprising or revealing information,
such as when S3 watched the call counts during Task A. At
one point, S3 thought aloud, “T get 2 mouse up actions [every
time I click]. Huh.” Then while watching the call counts and
clicking a second time, they exclaimed, “Aha!” as the nature
of the problem became more clear. S5 noted that they had be-
come fixated on a handful of functions while trying to narrow
down the location of some strange behavior because “it seems
weird to me that I get 2 mouse ups every time I click, while I
only get 1 mouse down. ... I'd expect the call counts to be the
same for both of them, but they’re not.” S4 and S6 also used
the fact that a function was called 17 times as verification that
it was being called once for each file in the directory during
Task B, since they had checked that there were 17 files.

The call counts also turned out to be useful for verifying that a
code change had had the desired effect. In S4’s case, the fact
that their change caused a function to be called a different
number of times was encouraging. The call count seemed a
reliable enough indicator for checking that the new behavior
was correct that they performed no further tests.

RQ2: How might programmers use Theseus to find where

chains of callbacks break down?

Finding where chains of callbacks break down is an important
subtask of finding code correspondences. In JavaScript, func-
tions typically cannot block while waiting for the result of an
I/O operation, which forces the programmer to split computa-
tions into multiple callback functions, with no guarantee that
control will flow successfully from one function to the other.

We noted several points during the study when participants
using Theseus were able to quickly, sometimes immediately,
locate the cause of a broken call chain, using the code col-
oring and call counts. In one instance, S4 opened a source
file and was immediately drawn to a network event handler
that had never been called, becoming suspicious because it
looked like a handler that should have fired several times if
the page had been working correctly. This was in contrast to
S3’s experience using a breakpoint debugger, in which they
set breakpoints and reloaded the page three times before they
finally determined how much of the code had actually exe-
cuted.

RQ3: Would programmers use Theseus’s structured log to

sort through tangled control-flow problems?

S4 named the log as Theseus’s most useful feature, saying
that Theseus is most useful “if you have recursion problems,”
referring to Task B in which his solution involved recursive
asynchronous operations. S3 dubbed the pills “automatic
silent breakpoints.” S1 compared the log to typical log output,

saying, “[Theseus] is a lot more focused ... with console.logs
it’s global. ... [With Theseus] you can pick the scope you
want to look at on the fly.” S4 summarized his opinion of the
log like this:

“It gives you what you would do if you were really care-
ful and did console.log every function. Yeah, so I didn’t
have to console.log. This saves at least one or two itera-
tions if the first thing you log is really the thing you need.
If you need to go through and look more, then this can
save a lot more iterations. ... This should be in Chrome.
... This should be in every JavaScript debugger. This is
very useful.”

S4 would often click the pills for several functions at once,
saying, “all the time, the thing that I wanted to do first is se-
lect all the functions and then see the whole tree.” Showing
the asynchronous call tree for all the functions of interest in
the file helped him to locate the points of interest. He cited
the lack of a ‘Select All Pills in File’ command as the reason
he rated Theseus’ ease of use as 4/5 instead of 5/5. S6 felt
similarly, at one point saying aloud, “These are the four func-
tions that are interacting,” and without pausing, enabling the
pills for those four functions to see how they related.

EVALUATION 2: INTERVIEWS

A limitation of the first study, like most lab studies, was its
short duration and experimenter-chosen tasks. Programmers
had little time to change their programming behavior in light
of a completely new tool, and no chance to use it on their
own tasks. To better understand how Theseus’s always-on vi-
sualizations might work in practice, we ran a second study
that gave Theseus to programmers for about a week, then in-
terviewed them to see how their programming behaviors had
adapted to the tool.

Methodology

We recruited a team of nine professional JavaScript program-
mers who work on a code base of about 80,000 lines to par-
ticipate in a week-long study. The particiapnts were all male.
Because they were professional programmers, the subjects in
this study were significantly more experienced than the uni-
versity students in the previous study. Subjects received $25
as compensation.

We introduced Theseus to the study participants at a group
meeting, and encouraged them to use Theseus for one week.
We asked them to document a programming problem in the
next week for which Theseus was or was not useful, and to
save a snapshot of the code at that point in time. At the end of
the week, we conducted hour-long semi-structured interviews
with each participant.

Each interview was comprised of two parts: First, we asked
the participant to walk through the problem they documented,
as well as their solution. Second, we asked partitipants to
complete the Canvas Painter programming task from the pre-
vious study. Subjects were instructed to use whatever pro-
gramming tools they were most comfortable with. However,
if they did not choose to use Theseus on their own, we asked

Subject | Theseus Use Pre-Interview (self-reported)

S20 4 hours

S21 3 hours

S22 1 hour

S23 0.25 hours

S24 2—4 hours

S25 <1.5 hours

S26 <0.25 hours

S27 <0.5 hours

S28 1.5-2 hours

Table 3. Each subject’s self-reported time spent using Theseus before
the interview.

them near the end to continue working with Theseus instead
of their preferred tool.

In this study, we evaluated three hypotheses about how
always-on visualizations might aid programmers in debug-
ging tasks:

H1. People will verify code behavior by running it instead of
reading and guessing.

H2. People will notice errors or oddities for investigation.

H3. People will locate the code responsible for a particular
behavior more accurately/confidently.

Additionally, we evaluated two hypotheses regarding the
overall perception of always-on displays:

H4. People will feel like they waste less time interacting with
debugging tools with always-on displays active.

HS. People will want more always-on displays.

Finally, we were interested in gaining a qualitative under-
standing of how always-on displays fit into a programmer’s
workflow, namely 1.) the situations when they were found to
be appropriate, helpful, or preferred, and 2.) the down-sides
that programmers found, such as distraction and information
overload.

A prompted think-aloud protocol was used, with the inter-
viewer’s prompts guided by the hypotheses. That is, when a
subject seemed to be performing a relevant act, such as read-
ing code, the interviewer would elicit the participant’s justi-
fication for his current actions. We made a screen and au-
dio recording of each interview. The audio was transcribed
by one researcher. Then, the transcripts were coded for rel-
evance to the above hypohtheses by five researchers (one of
whom was the interviewer).

Results

Subjects spent varying amounts of time using Theseus during
the week between its introduction and their interview. The
times are summarized in Table 3.

The evidence related to each of the hypotheses is presented
under each of the headings below.

H1: People will verify code behavior by running it instead of
reading and guessing

Subjects did not activate a debugger until they got stuck.
Upon starting the Canvas Painter task, all subjects began by
skimming the source code without the aid of a debugger. The
task was to change the way the page reacted to mouse events
(specifically the end of a drag), so subjects gravitated toward
mouse-related code. S21 started by searching for ‘click’ but
the rest just skimmed files that had suggestive names for code
that looked like it contained mouse event handlers. 4 of the 9
subjects said something like “familiarize myself with where
all the code is” for this step (S26’s words). S22 went so far as
to say, “I try to stay out of the debugger as much as possible
because it’s a time suck.”

Three subjects eventually ran the code as part of the initial
code location step. S23 used Chrome’s event breakpoints to
have the step debugger stop every time JavaScript code ran
in response to a click event. S24 and S27 ran Theseus to tell
which of several mouse handlers was the one he should be
interested in. S27 explained that if he didn’t have Theseus, he
would probably spend more time just reading the code, since
breakpoints are tricky to use with mouse events (because us-
ing the debugger requires using the mouse) and that adding
log statements is tedious.

H2. People will notice errors or oddities for investigation
Code coloring affected the reading process of the program-
mers. S24 was drawn to a particular section of unexecuted
code and read it to figure out whether it should have executed,
according to how he thought the code worked. S25 skipped
reading portions of a file, saying, “Okay, nothing called in
this.” However, his attention was drawn to code that had been
called even if it was not related to the code he was attempting
to locate. S20 ignored the coloring and read code that The-
seus marked as unexecuted to understand the behavior of the
page, despite knowing that unexecuted code could not have
had any effect.

During an explanation, S21 described how a certain situa-
tion could not occur because a certain function wasn’t being
called. He checked the source and discovered that actually the
function was being called, which led to further exploration
and a revised explanation.

Call counts were effective in revealing oddities or confirm-
ing correct behavior. S20, S21, S24, and S25 encountered
instances where the absolute number of calls to a function
drew their attention to a problem or an aspect of the code that
they did not yet understand. S20 noticed a call count while
forming a hypothesis about the code and used it to inform his
thinking, saying, “Hmm, this is only called one time ... does
that mean the ... clearing the drawing is not another drawing
...> S21 had his attention drawn to call counts that were sur-
prisingly high, which allowed him to make a guess at what the
code was for, saying “This was called a bunch, 319 times...
maybe they’re simulating dragging.” S24 used Theseus on
a project that loaded 100 images asynchronously and noted
that “img.onload is stopping at 100. That’s good, that’s
perfect.”

The differences between call counts also proved important.
S21 noticed that a callback was occurring twice every time

he performed an action on the page, instead of only once as
he had expected. Both S24 and S27 found bugs in their re-
spective applications when they noticed that a pair of func-
tions that should have been called the same number of times
actually had different call counts. In S24’s case it was the
start and end of a callback chain, and for S27 it was a pair of
mouse-down and mouse-up handlers.

The colors of the call counts were occasionally useful as well.
S28 noticed the red coloring of a call count that indicated
an exception in the function he was reading, and stated that
he had not noticed the exception when it was printed to the
console.

H3. People will locate the code responsible for a particular

behavior more accurately & confidently

Subjects used total call counts, changes in call counts, and
lack of calls to make informed guesses about what code was
for. S21, S23, and S24 used the side-by-side technique to ver-
ify that they understood what the code they were looking at
was responsible for the behavior they thought it was. S21 was
satisfied with weak evidence in one case, saying, “So this was
called 7 times. ... Seems about right. I didn’t draw that many
things.” In the process of watching call counts change for one
function, S21 noticed that the mouse-up handler nearby was
being called more times than expected. S23 used the lack of
changes to a call count to determine that they were incorrect
about which handler was used for a particular action. When
reading a screen full of potential handlers for an event, S20
used the code coloring to decide which was the one he was
looking for—it was the only one that wasn’t gray.

S26 adapted a trace comparison strategy he was used to using
with log statements to the information available in Theseus.
S26 wished to compare what happened in the code when he
triggered the bug with what happened when he performed the
same task in a way that did not trigger the bug. To do so, he
reset the call counts by reloading, performed the task in one
way, observed the counts, then repeated those steps with the
alternate means. The process was tedious, but the difference
in the call counts gave him an idea of where to look.

520 and S25 found that Theseus would have been more help-
ful with locate responsible code if it visualized activity at the
project level.

H4. People will feel like they waste less time with always-on

tools

The interviews revealed relatively little evidence about per-
ceived or actual time-wasting. S20 observed that Theseus’s
ability to associate each callback with the invocation that cre-
ated it was very hard to accomplish with other debuggers,
and perceived it as a time-saver. S23 felt that the “biggest
JavaScript debugging time suck” was determining why an
event handler wasn’t being called, and Theseus answered
that question more efficiently than inserting log statements
by hand. But S23 and S25 both spent time waiting while
Theseus rendered a large group of log statements.

H5. People will want more live displays

4 subjects (S22, S25, S27, and S28) expressed interest in
more always-on displays, usually as extensions to Theseus’s
current interface. S22 wished for Theseus to show the time
spent in every function, S22 and S25 wanted the file-level
counterpart to the function-level call counts, and S27 and
S27 wanted information about the state changes on individ-
ual lines.

Subjects S20 and S21 preferred step debuggers to Theseus.
S20 felt strongly that breakpoint debuggers were more natu-
ral. S21 switched away from Theseus to Chrome’s step de-
bugger, saying “I can’t quite see ... what its current state
is and how that influences which conditional we’re going
down,” and that the “[step debugger] mental model is eas-
ier to understand.” S21 pointed out that with a step debugger,
he could also watch the web page update as he stepped.

When do programmers find Theseus to be helpful?
Breakpoints interfered with reproducing bugs related to
mouse gestures, but Theseus did not. S23 and S24 chose to
use Theseus instead of breakpoints because of the way break-
points would affect the behavior of the program. In S23’s
case, he feared that interacting with the step debugger would
interfere with reproducing bugs on the web page with the
mouse. S24’s code involved downloading many files in paral-
lel and the code that executed in the meantime, so stopping at
breakpoints would affect the order that events occurred. S23
said that they had considered adding log statements as well,
but that it was more tedious than using Theseus’s log.

S20 chose to use breakpoints at first, but eventually switched
to Theseus. S20 started by setting a breakpoint, then running
the code but failing to hit the breakpoint. He repeated those
steps 2 more times before saying, “I can see that this kind
of thing might be a lot easier to see ... with Theseus.” He
activated Theseus and was able to see which functions were
actually used during his mouse gesture.

However, S21 preferred using breakpoints to using Theseus.
S21 thought that omniscience was the useful aspect of The-
seus, saying that if his browser’s breakpoint debugger were
omniscient, he would use that instead of Theseus’s log. He
pointed out that breakpoints allowed him to view the entire
state (including the contents of the web page) after every step.

S27 did not use Theseus because there would have been
“a bunch of calls all over the place” and he feared that he
wouldn’t be able to see which were related to his bug.

528 discovered that Theseus introduced timing delays in his
multi-threaded animations which changed the characteristic
of the bug he was investigating.

Downsides of always-on displays

Two subjects experience information overload when interact-
ing with the log. S23 said that showing all of the arguments
and return values simultaneously made him unable to parse
any of it. S25 simply noted that there was a lot of information
which he did not need. On the other hand, S22 appreciated
that the log showed a lot of data at once.

CONCLUSIONS AND FUTURE WORK

This paper presented Theseus, an IDE extension that vi-
sualizes run-time behavior within a JavaScript code editor.
Theseus visualizes the program’s run-time state using code
coloring for unreached functions, call counts for executed
functions, and automatic retroactive logging of parameters
and return values. A lab user study and a field deployment
found that programmers enjoyed the availability of reacha-
bility coloring and call counts, and adopted new problem-
solving strategies to take advantage of their strengths.

Future work in always-on programming visualizations should
take two directions. First is increasing the reach of The-
seus’s omniscience, by capturing state at finer-grained lo-
cations than function entry and exit points, and information
about heap data structures and user interface (DOM) state. A
key challenge in this area is capturing information without
adversely affecting performance, so that the logging can re-
main always-on. Recent work on replay debugging [2] will
help, but performance still needs to be improved. The second
research direction is studying new kinds of runtime informa-
tion to visualize, such as variable types, uses of undefined
variables and fields, and exception-throwing expressions, and
new designs for displaying them unobtrusively with the code.

ACKNOWLEDGMENTS

This work was supported in part by Adobe, and by the
National Science Foundation under award number SOCS-
1111124. Any opinions, findings, conclusions, or recommen-
dations in this thesis are the authors’, and they do not neces-
sarily reflect the views of the sponsors.

REFERENCES
1. Arends, R. traceGL, Sept. 2013. https://trace.gl/.

2. Burg, B. Timelapse: Interactive Record/Replay for the
Web. http://homes.cs.washington.edu/~burg/
projects/timelapse/research.html.

3. Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M.,
Bellamy, R., Lawrance, J., and Kwan, I. An information
foraging theory perspective on tools for debugging,
refactoring, and reuse tasks. ACM Transactions on
Software Engineering and Methodology (TOSEM) 22, 2
(2013), 14.

4. Google. Remote debugging protocol - Chrome
DevTools, Sept. 2013.
https://developers.google.com/
chrome-developer-tools/docs/debugger-protocol.

5. Gould, J. D. Some psychological evidence on how
people debug computer programs. International Journal
of Man-Machine Studies 7, 2 (1975), 151-182.

6. Griffiths, D. Scheme Bricks, Sept. 2013.

http://www.pawfal.org/dave/index.cgi?Projects/
Scheme%20Bricks.

7. Kato, J., Mcdirmid, S., and Cao, X. DejaVu: Integrated
Support for Developing Interactive Camera-Based
Programs. In Proc. UIST 2012 (2012).

8. Ko, A.J., and Myers, B. A. Designing the Whyline: A
Debugging Interface for Asking Questions about
Program Behavior. In Proc. SIGCHI 2004, vol. 6 (2004).

https://trace.gl/
http://homes.cs.washington.edu/~burg/projects/timelapse/research.html
http://homes.cs.washington.edu/~burg/projects/timelapse/research.html
https://developers.google.com/chrome-developer-tools/docs/debugger-protocol
https://developers.google.com/chrome-developer-tools/docs/debugger-protocol
http://www.pawfal.org/dave/index.cgi?Projects/Scheme%20Bricks
http://www.pawfal.org/dave/index.cgi?Projects/Scheme%20Bricks

10.

1.

12.

13.

. LaToza, T. D., and Myers, B. A. Developers Ask

Reachability Questions. In Proc. ICSE 2010, vol. 1,
ACM Press (New York, New York, USA, 2010).

LaToza, T. D., and Myers, B. A. Visualizing Call
Graphs. In Proc. VL/HCC 2011, Teee (Sept. 2011).

Lieberman, H., and Fry, C. Bridging the Gulf Between
Code and Behavior in Programming. In Proc. SIGCHI
1995, CHI °95, ACM Press/Addison-Wesley Publishing
Co. (New York, NY, USA, 1995).

Meier, M. S., Miller, K. L., and Pazel, D. P. Experiences
with Building Distributed Debuggers. In Proc.
SIGMETRICS 1996 (1996).

Microsoft. Debug Your App by Recording Code
Execution with IntelliTrace. http://msdn.microsoft.
com/en-us/library/vstudio/dd264915.aspx.

10

14.

15.

16.

17.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B., et al. Scratch: programming
for all. Communications of the ACM 52, 11 (2009),
60-67.

Schrock, E. Debugging AJAX in Production. ACM
Queue (2009).

Sillito, J., Murphy, G. C., and De Volder, K. Questions
programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering,
SIGSOFT ’06/FSE-14, ACM (New York, NY, USA,
2006), 23-34.

Victor, B. Learnable Programming.
http://worrydream.com/#!/LearnableProgramming,

2012.

http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx
http://worrydream.com/#!/LearnableProgramming

	Introduction
	Related Work
	Theseus's Interface Design
	Scenario: A Network Activity Indicator
	A sanity check
	Understanding timing
	Verify that the timer clears appropriately

	Summary
	Retroactive Logging

	Theseus Implementation
	Fondue, the JavaScript instrumentation library
	Querying the program trace
	Debugging server-side Node.js code
	Debugging client-side code in Chrome

	Evaluation 1: Lab Study
	Methodology
	Results
	RQ1: How might programmers find correspondences between code and program behavior with Theseus?
	RQ2: How might programmers use Theseus to find where chains of callbacks break down?
	RQ3: Would programmers use Theseus's structured log to sort through tangled control-flow problems?

	Evaluation 2: Interviews
	Methodology
	Results
	H1: People will verify code behavior by running it instead of reading and guessing
	H2. People will notice errors or oddities for investigation
	H3. People will locate the code responsible for a particular behavior more accurately & confidently
	H4. People will feel like they waste less time with always-on tools
	H5. People will want more live displays
	When do programmers find Theseus to be helpful?
	Downsides of always-on displays

	Conclusions and Future Work
	Acknowledgments
	REFERENCES

